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Abstract

After suitable normalization the asymptotic root value W of a minimax game tree of
order b ≥ 2 with independent and identically distributed input values having a continuous,
strictly increasing distribution function on a subinterval of R appears to be a particular so-
lution of the stochastic maximin fixed-point equation W

L= ξ max1≤i≤b min1≤j≤b Wi,j ,
where Wi,j are independent copies of W and

L= denotes equality in law. Moreover,
ξ = g′(α) > 1, where g(x) := (1 − (1 − x)b)b and α denotes the unique fixed point
of g in (0, 1). This equation, which takes the form F(t) = g(F (t/ξ)) in terms of the
distribution functionF ofW , is studied in the present paper for a reasonably extended class
of functions g so as to encompass more general stochastic maximin equations as well.
A complete description of the set of solutions F is provided followed by a discussion of
additional properties such as continuity, differentiability, or existence of moments. Based
on these results, it is further shown that the particular solution mentioned above stands
out among all other ones in that its distribution function is the restriction of an entire
function to the real line. This extends recent work of Ali Khan, Devroye and Neininger
(2005). A connection with another class of stochastic fixed-point equations for weighted
minima and maxima is also discussed.
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weighted minima; weighted maxima
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1. Introduction

In complex two-person full information games like chess and go, players can typically
search for best moves only a finite number of steps ahead. The possible moves and the terminal
positions under this constraint can be represented in a rooted, so called minimax tree with fixed
branching degree b ≥ 2 and height 2k, k ≥ 0, where b gives the number of possible moves
per turn of a player and 2k is the searching horizon. The terminal positions are represented
by the leaves of the tree which are carrying random values V1, . . . , Vn, n = b2k , where large
values indicate a position that favors player one while smaller values favor player two. All
other nodes of the tree are labeled with ∧ (minimum) on odd levels and with ∨ (maximum)
on even levels. The value of a node can be evaluated by applying its labeling operator to the
values of the children. This corresponds to player one always choosing the move with maximal
value whereas player two always chooses the move with minimal value. In the present paper
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A stochastic maximin fixed-point equation 587

we are concerned with the asymptotic root value Zk of such a minimax tree as k tends to ∞ and
assuming that V1, . . . , Vn are independent and identically distributed (i.i.d.). This problem was
first studied by Pearl [7], who showed that Zk , without any scaling, converges in probability to
a constant c,

Zk
P−→ c as k → ∞

under the condition that the common distribution function FV , say, of the Vj is continuous and
strictly increasing on {0 < FV < 1}. He gave a further characterization of c, namely

c = F−1
V (α),

with α denoting the unique fixed point in (0, 1) of the function

g(x) := (1 − (1 − x)b)b. (1.1)

The result was recently strengthened by Ali Khan et al. [2, Theorem 1] who showed that, with
ξ := g′(α) > 1,

ξk(FV (Zk) − α)
L−→ W ∗ as k → ∞, (1.2)

where
L−→ denotes convergence in law. Moreover, the distribution L(W ∗) of W ∗, which does not

depend on the distribution L(V ) of the leaf weights V1, . . . , Vn, has a continuous distribution
function F ∗ with 0 < F ∗ < 1, F ∗(0) = α, and

F ∗(x) = g

(
F ∗

(
x

ξ

))
, x ∈ R, (1.3)

where g is as defined in (1.1). The invariance of L(W ∗) becomes quite obvious when observing
that FV (Zk) − α is nothing but the root value of the tree when replacing V1, . . . , Vn with
FV (V1) − α, . . . , FV (Vn) − α which, besides again being i.i.d., are always having a uniform
distribution on (−α, 1 − α). The above result could therefore be restated as follows.

Theorem 1.1. Let g be given by (1.1) for some b ≥ 2 and V1, V2, . . . be i.i.d. random variables
with a uniform distribution on (−α, 1−α), where α denotes the unique fixed point of g in (0, 1).
Then the asymptotic root value Zk , as defined above, satisfies

ξkZk
L−→ W ∗ as k → ∞,

where ξ = g′(α) and W ∗ has a continuous distribution function F ∗ satisfying 0 < F ∗ < 1,
F ∗(0) = α, and (1.3).

Equation (1.3) means that W ∗ (more precisely its law L(W ∗)) is a solution of the stochastic
fixed-point equation

W
L= ξ max

1≤i≤b
min

1≤j≤b
Wi,j , (1.4)

where the Wi,j are independent copies of W . Involving maxima and minima simultaneously,
this equation is similar and yet different from the max-type fixed-point equations discussed
extensively in a recent survey by Aldous and Bandyopadhyay [1] and also in [6] and [4]. On
the other hand, there is a connection to a pure max-type equation studied by Alsmeyer and
Rösler [3], namely to

W
L= max

1≤j≤b
TjWj , (1.5)
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Figure 1: An approximation of F ∗ and its derivative (density function) based on a0, . . . , a50 recursively
computed using (1.6). This plot may be compared to a similar one in [2] obtained by using the fixed point

equation (1.3).

in the case where the Tj are negative constants. Indeed, if T1 = · · · = Tb and ξ := T 2
1 , then (1.5)

takes the form of (1.4) after one iteration. Further information will be given in Subsection 4.3.
Neininger (personal communication) raised the question of the uniqueness of the distribution

of W ∗ as a solution to (1.4) (modulo scaling by positive factors) and thus of a description of all
solutions. The latter is the main purpose of this article. We will show that, in fact, there exists
a whole continuum of solutions to (1.4) among which the limit law L(W ∗) in (1.2) stands out
by having the following particular smoothness properties.

Theorem 1.2. Under the stated conditions, the distribution function F ∗ is the restriction of an
entire function to the real line and, thus, may be written as an everywhere convergent power
series F ∗(x) = ∑

n≥0 anx
n. In particular, F ∗ is infinitely often differentiable and the unique

solution to (1.3) with the property that F ∗(0) = α and F ∗′
(0) = 1. The coefficients an, n ≥ 0,

of the above expansion satisfy a0 = α, a1 = 1, and

an = 1

ξn − ξ

b2∑
k=2

ck

∑
j1+···+jk=n,
j1≥1,...,jk≥1

aj1 · · · ajk
(1.6)

for n ≥ 2, where c0, . . . , cb2 are the coefficients of g in its polynomial expansion about α.
Moreover, the moment-generating function �F ∗(t) := ∫

etx F ∗(dx) of F ∗ is finite for all t ∈ R.

A plot of F ∗ and its derivative, obtained by recursive calculation of a2, . . . , a50 using (1.6),
is shown in Figure 1. We will prove Theorem 1.2 in Section 6 and finish our introduction with
a short outline of the rest of this article. In Section 2 we discuss a more general version of
the fixed-point equation (1.4). More precisely, its equivalent version (1.3) will be studied for a
fairly general class of functions g. The main results provide us with a complete description of
the set of solutions to this equation and conditions that ensure existence of continuous or even
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differentiable solutions when viewed as distribution functions (notationally, no distinction is
made throughout this article between a distribution and its distribution function). In Section 3
we focus on the question of existence of moments of solutions. We return to maximin fixed-
point equations including (1.4) in Section 4 by presenting a discussion of it in light of the
previously obtained results, examining the case in which the numbers of occurring maxima and
minima are random variables, and analyzing its connection with another fixed-point equation
for weighted maxima and minima that has been studied in [3]. All proofs are given in Sections 5
and 6 followed by concluding remarks in Section 7. An appendix collects some basic properties
of the functions g considered in (1.3).

2. The general fixed-point equation and its solutions

Returning to (1.4) let us note that it does not much complicate the situation to consider the
following more general equation:

W
L= ξ max

1≤i≤n
min

1≤j≤mi

Wi,j , (2.1)

with integers m1, . . . , mn, n ≥ 2. Expressing (2.1) in terms of distribution functions (which we
do not distinguish notationally from the pertinent distribution), we have (compare with (1.3))

F(t) =
n∏

i=1

(
1 −

(
1 − F

(
t

ξ

))mi
)

= g ◦ F

(
t

ξ

)
(2.2)

for all t ∈ R, where g(x) = ∏n
i=1(1 − (1 − x)mi ) is a polynomial and an element from the

class G, say, of continuously differentiable, strictly increasing functions g : [0, 1] → [0, 1]
satisfying g(c) = c for c ∈ {0, 1} and finitely many, but at least one c ∈ (0, 1) (for the former
polynomial this c is in fact unique, see Lemma A.2 in the appendix). Since the class G is
actually an appropriate function class for our task, we will first study (2.2) for general functions
g ∈ G and ξ > 1. A discussion of the maximin situation with polynomial g as stated above is
postponed until Section 4. Denote by Fg,ξ the set of all solutions of (2.2) and note that this set
always contains the trivial solution δ0, the Dirac measure at 0. Let F+

g,ξ and F−
g,ξ be the subsets

of fixed points having mass 0 on the negative and positive halfline, respectively.
With the stated extension of the function g, further fixed-point equations are covered as well,

for instance,

W
L= ξ max

1≤i≤n
min

1≤j≤mi

max
1≤k≤nij

min
1≤l≤mijk

Wi,j,k,l ,

where again g is a polynomial, or (2.2) with random numbers n, m1, . . . , mn, in which case
g ∈ G is generally not a polynomial (see Section 4.2 for further details).

Let Lg denote the finite set of fixed points of g, i.e. Lg := {x ∈ [0, 1] : g(x) = x} ⊃ {0, 1}.
The relevance of the fixed points of g for our purposes becomes apparent when observing that,
by (2.2) and the continuity of g, any F ∈ Fg,ξ must satisfy

F(0−) = g(F (0−)) and F(0) = g(F (0)),

where F(x−) := limy↑x F (y). Define

c0 := inf Lg \ {0} and c1 := sup Lg \ {1},
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Figure 2: Examples illustrating cases (i)–(iv).

which are both (possibly equal) elements of Lg . Furthermore, 0 < c0 ≤ c1 < 1, as g has at
least one fixed point in (0, 1). With a little more effort we can verify that F(0−) ∈ {0, c0} and
F(0) ∈ {c1, 1} (see Lemma 5.1). The following four cases will be distinguished hereafter so
as to state our results in a comprehensive way.

Case (i): g(x) < x for 0 < x < c0 and g(x) > x for c1 < x < 1.

Case (ii): g(x) > x for 0 < x < c0 and g(x) > x for c1 < x < 1.

Case (iii): g(x) < x for 0 < x < c0 and g(x) < x for c1 < x < 1.

Case (iv): g(x) > x for 0 < x < c0 and g(x) < x for c1 < x < 1.

Figure 2 shows a possible shape of g for each of these cases.
We further need the following function classes. Fixing any s0, t0 ∈ R, s0 < 0 < t0, let F−

and F+ be the classes of nondecreasing, right-continuous functions f− : [ξs0, s0) → [0, ∞)

and f+ : [t0, ξ t0) → [0, ∞), respectively, satisfying 0 ≤ f−(ξs0) < c0, c1 < f+(t0) ≤ 1,

f−(s) ≤ g−1(f−(ξs0)) for s ∈ [ξs0, s0),

and
f+(t) ≤ g(f+(t0)) for t ∈ [t0, ξ t0). (2.3)

Here g−1 denotes the inverse function of g. We also write gn for |n|-fold composition of g

(n ≥ 1), or of its inverse g−1 (n ≤ −1), and let g0 be the identity function.
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Theorem 2.1. Let g ∈ G and ξ > 1. Arbitrarily fixing s0, t0 ∈ R, s0 < 0 < t0, the set Fg,ξ

can be described as follows.

(a) (Case (i).) There is a one-to-one correspondence between Fg,ξ and F− ×F+ in the sense
that any F ∈ Fg,ξ is of the form

F(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

gn

(
f+

(
t

ξn

))
if t > 0,

gn

(
f−

(
t

ξn

))
if t < 0,

c1 if t = 0 and f+(t0) < 1,

1 if t = 0 and f+(t0) = 1,

(2.4)

for some pair (f−, f+) ∈ F− × F+, where n ∈ Z is the unique integer satisfying
t0 ≤ t/ξn < ξt0 if t > 0, and ξs0 ≤ t/ξn < s0 if t < 0.

(b) (Case (ii).) There is a one-to-one correspondence between Fg,ξ and F+ in the sense that
any F ∈ Fg,ξ is of the form of (2.4) for some f+ ∈ F+ and with f− ≡ 0. In particular,
any such F is concentrated on the nonnegative halfline, i.e. Fg,ξ = F+

g,ξ .

(c) (Case (iii).) There is a one-to-one correspondence between Fg,ξ and F− in the sense that
any F ∈ Fg,ξ is of the form of (2.4) for some f− ∈ F− and with f+ ≡ 1. In particular,
any such F is concentrated on the nonpositive halfline, i.e. Fg,ξ = F−

g,ξ .

(d) (Case (iv).) There is no nontrivial solution, i.e. Fg,ξ = {δ0}.
Thus, we conclude that every nontrivial solution F ∈ Fg,ξ , once being defined locally on

the intervals [ξs0, s0) ⊂ (−∞, 0) and/or [t0, ξ t0) ⊂ (0, ∞) for arbitrary s0 < 0 < t0, is then
already determined everywhere with the possible restriction that it be concentrated on one of
the halflines. Also, since F− and F+ contain f− ≡ 0 and f+ ≡ 1, respectively, the fixed-point
property persists whenever a two-sided F (as a probability measure) is restricted to one of the
halflines. Consequently, the one-to-one correspondence stated in Theorem 2.1(a) for case (i)
may also be viewed as a one-to-one correspondence between Fg,ξ and F−

g,ξ × F+
g,ξ .

Our next result shows that continuity or even differentiability of F ∈ Fg,ξ on R \ {0} follow
when putting further restrictions on f− and f+.

Theorem 2.2. In the situation of Theorem 2.2, a solution F ∈ Fg,ξ , defined by (2.4), satisfies
the following.

(a) F is continuous on R \ {0}, if f− and f+ are continuous with f−(ξs0) = g(f−(s0)),
f+(ξ t0) = g(f+(t0)),

f−(s0)

{
∈ [0, c0) if g(x) < x for x ∈ (0, c0),

= 0 otherwise,

and

f+(t0)

{
∈ (c1, 1] if g(x) > x for x ∈ (c1, 1),

= 1 otherwise.

It is also continuous at 0 if f−(s0) > 0, f+(t0) < 1, and g has exactly one fixed point in
(0, 1).
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(b) F is differentiable on R \ {0}, if g, f−, and f+ are differentiable on [0, 1], [ξs0, s0],
and [t0, ξ t0], respectively (in the one-sided sense at the boundaries), with g′ > 0 on
(0, c0) ∪ (c1, 1), f ′−(s0) = ξ−1g′(f−(s0))f

′−(s0), and f ′+(ξ t0) = ξ−1g′(f+(t0))f
′+(t0).

The question of differentiability of F at 0 is more delicate and cannot be generally answered.
We return to this point in Section 6 in connection with the proof of Theorem 1.2.

Our last result of this section follows, essentially, from the previous one and provides the
necessary and sufficient conditions that ensure the existence of a continuous solution F ∈ Fg,ξ .

Corollary 2.1. Given any ξ > 1 and g ∈ G, the fixed-point equation (2.2) has a continuous
solution if, and only if, g has exactly one fixed point α ∈ (0, 1) and g(x) ≷ x for x ≷ α,
x ∈ (0, 1).

All results of this section will be proved in Section 5.

3. The existence of moments

The following two results will be concerned with the existence of moments for solutions
F ∈ Fg,ξ which is most efficiently done by studying F on (0, ∞) and (−∞, 0) separately.
Recalling the remarks after Theorem 2.2 it is in fact sufficient to study the moments of the
elements of F−

g,ξ and F+
g,ξ . Therefore, for p > 0, let M

+
p and M

−
p denote the sets of distributions

F having a finite pth moment on (0, ∞) and (−∞, 0), respectively, i.e.

M
+
p :=

{
F :

∫
(0,∞)

xp F (dx) < ∞
}

and similarly for M
−
p . Also, let M

±
<p := ⋂

q<p M
±
q be the set of distributions with finite

moments of order q < p on the associated halflines, and set M
±∞ = ⋂

p>0 M
±
p .

Theorem 3.1. Given ξ > 1 and g ∈ G, set

p0 := log(1/g′(0))

log ξ
and p1 := log(1/g′(1))

log ξ
,

which are interpreted in the usual way as ∞ if g′(0) = 0 and g′(1) = 0, respectively. Then the
following assertions hold true.

(a) If p0 > 0, then F−
g,ξ �= ∅ and F−

g,ξ ⊂ M
−
<p0

. In particular, F−
g,ξ ⊂ M

−∞ in the case in
which p0 = ∞.

(b) If p0 < ∞, then F−
g,ξ ∩ Mp = ∅ for any p > p0.

(c) If p1 > 0, then F+
g,ξ �= ∅ and F+

g,ξ ⊂ M
+
<p1

. In particular, F+
g,ξ ⊂ M

+∞ in the case in
which p1 = ∞.

(d) If p1 < ∞, then F+
g,ξ ∩ Mp = ∅ for any p > p1.

Thus, we conclude that the existence of (polynomial) moments is essentially tied to the
behavior of g′ at 0 and 1. For two-sided fixed points F , which only exist in case (i), Theorem 3.1
directly implies that

∫ |x|p F (dx) is finite for all p < min(p0, p1) and infinite for p >

min(p0, p1). Another immediate consequence of the result is that exponential moments
of any F �= δ0 can only exist if at least one of g′(0) and g′(1) equals 0. Assuming the
latter, our next result provides conditions which are either necessary or sufficient for the
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existence of an exponential moment of the order s ∈ R for F ∈ Fg,ξ , that is of �F (s),
where �F (t) := ∫

etx F (dx) is the moment-generating function (MGF) of F .

Proposition 3.1. Given ξ > 1, g ∈ G, and any F ∈ Fg,ξ , set c+
k := 1 − gk(F (1)) and

c−
k := gk(F (−1)), for k ≥ 0. Then∑

k≥0

e±sξk+1
c±
k < ∞ �⇒ �F (±s) < ∞ �⇒

∑
k≥1

e±sξk

c±
k < ∞ (3.1)

holds true for each s > 0.

Thus, we see that the existence of �F (s) for any s �= 0 depends very sensitively on the rate
at which gk(F (−1)) or 1−gk(F (1)) approaches 0 as k → ∞. The relevance of both quantities
for the tail behavior of F becomes apparent when observing that, by (2.2),

gk(F (−1)) = F(−ξk) and gk(F (1)) = F(ξk),

for each k ≥ 0. Naturally, this will enter into the proof. More transparent conditions on the
finiteness of �F (s) will be provided in the next section for the general maximin fixed-point
equation (2.1).

4. Maximin fixed-point equations revisited

4.1. The general maximin fixed-point equation

Returning to (2.1), that is to

W
L= ξ max

1≤i≤n
min

1≤j≤mi

Wi,j ,

with ξ > 1 and integers n, m1, . . . , mn ≥ 2, leads us to a study of (2.2) for polynomials g of
the form

g(x) =
n∏

i=1

(1 − (1 − x)mi ).

It is shown in Lemma A.2 of the appendix that g has exactly one fixed point c in (0, 1), so
c0 = c1 = c, and that g′(0) = g′(1) = 0 (implying case (i)). By Theorem 3.1, the last
fact ensures that every solution has moments of any polynomial order and suggests looking at
exponential moments or, in other words, looking at the MGF, �F (s), of a solution F ∈ Fg,ξ .
As disclosed by Proposition 3.1, finiteness of �F (s) for s �= 0 depends on the rate of decay of
one of the sequences

1 − gn(F (1)) = 1 − F(ξn) or gn(F (−1)) = F(−ξn), n ≥ 0,

but further information can be given for the situation here.

Theorem 4.1. Under the previous assumptions set m := min(m1, . . . , mn) and let F ∈ Fg,ξ .
Then the following assertions hold true.

(a) The MGF, �F (s), is finite for all s > 0 if ξ < m, and is in a right neighborhood of 0 if
ξ = m.

(b) If F has positive mass on (0, ∞) and ξ > m, then �F (s) = ∞ for each s > 0.
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(c) The MGF, �F (s), is finite for all s < 0 if ξ < n, and in a left neighborhood of 0 if ξ = n.

(d) If F has positive mass on (−∞, 0) and ξ > n, then �F (s) = ∞ for each s < 0.

The proof of this result will be given in Section 5 after the proof of Proposition 3.1, on which
it is based.

4.2. The maximin fixed-point equation involving random numbers of maxima and minima

Replacing n, m1, . . . , mn with integer-valued random variables N, M1, . . . , MN in (2.1)
leads to the fixed-point equation

W
L= ξ max

1≤i≤N
min

1≤j≤Mi

Wi,j , (4.1)

where the Wi,j are independent copies of W which are also independent of (N, M1, . . . , MN).
Suppose that N, M1, M2 . . . are positive and independent and, furthermore, that M1, M2, . . .

are identically distributed with generic copy M . Let fN(s) = E sN and fM(s) = E sM denote
the generating functions of N and M , respectively. A simple calculation shows that under these
assumptions (4.1), in terms of distribution functions, again takes the form F(t) = g ◦ F(t/ξ),
but with g(x) = fN(1 − fM(1 − x)). Plainly, g(0) = 0 and g(1) = 1, but g does not need to
be an element of G, in that it may have infinitely many fixed points in (0, 1) (see Example 4.3,
below) or may fail to be continuously differentiable at 0 or 1 (for instance, if E M = ∞ and
P(N = 1) > 0). The following lemma provides sufficient conditions for Lg to be finite.

Lemma 4.1. Each of the following two conditions is sufficient for Lg to be finite:

(C1) both P(N = 1) E M and P(M = 1) E N are not equal to 1,

(C2) fN(x) < ∞ and fM(x) < ∞ for some x > 1, and g(x) �≡ x.

Proof. Suppose (C1) holds. Since both g′(0) = P(N = 1) E M and g′(1) = P(M = 1) E N

are not equal to 1, we must have Lg \ {0, 1} ⊂ [ε, 1 − ε] for some ε > 0. Now, if Lg is infinite
it contains an accumulation point in the compact set [ε, 1 − ε] and thus in (0, 1), which in turn
leads to the impossible conclusion that g(x) = x on [0, 1] as g is analytic on (0, 1).

Assuming (C2), the function g is analytic in some (−ε, 1+ε), ε > 0. Hence, if Lg is infinite
it has an accumulation point in this interval implying that g(x) ≡ x. But this is excluded by
assumption.

Clearly, under condition (C1) or (C2) the set of solutions to (4.1) is completely described by
Theorem 2.1. We close this subsection with an example that shows that g(x) ≡ x may occur
even if N and M have nondegenerate distributions on N.

Example 4.1. Suppose that fN(x) = 2x − 1 and fM(x) = 1 − (log 2)−1 log(2 − x); thus,

P(N = n) = (log 2)n

n! and P(M = n) = 1

log 2

1

n2n
,

for n ∈ N. It is then readily verified that g(x) = fN(1 − fM(1 − x)) = x and, so, g �∈ G. In
this situation we arrive at the somewhat curious conclusion that (4.1), with ξ > 1, has no other
solution than δ0, but that the very same equation with ξ = 1, i.e.

W
L= max

1≤i≤N
min

1≤j≤Mi

Wi,j

is always valid.
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4.3. Connection to a fixed-point equation for weighted maxima

In a recent article [3], Alsmeyer and Rösler studied the stochastic fixed-point equation

W
L= max

1≤i≤b
TiWi (4.2)

and its min-type counterpart

W
L= min

1≤i≤b
TiWi,

with b ≥ 2 and a vector T = (T1, . . . , Tb) of real constants. Let Fmax
T and Fmin

T denote
the corresponding sets of solutions in the space of distributions on R. Since L(W) ∈ Fmax

T

if and only if L(−W) ∈ Fmin
T it suffices to study only one of the two equations, here (4.2)

for convenience, whereas the min-type equation was chosen in [3]. The authors provided a
complete description of Fmin

T in all but one case. For that exceptional case, which occurs when
all Ti are negative, they could give a necessary and sufficient condition for a distribution to be
in Fmin

T (see (4.3), below) but they had to leave open the question whether nontrivial solutions
exist at all (Fmin

T �= {δ0}). Here is their result, Theorem 5.1(a) in [3], reformulated for the
max-type situation.

Proposition 4.1. Let ν be the unique solution of the equation ν+νb = 1 in (0, 1). A distribution
F �= δ0 forms a solution to (4.2) if and only if F = νG + νb

UT G for some distribution G on
(0, ∞) satisfying

1 − νḠ(t) =
b∏

i=1

(
1 −

b∏
j=1

νḠ

(
t

TiTj

))
(4.3)

for t ≥ 0, where Ḡ(t) = 1 − G(t) and the distribution UT G on (−∞, 0) is defined by

UT G(t) :=
b∏

j=1

Ḡ

(
t

Tj

−
)

, t < 0.

A link between our setup and (4.2) arises when observing that this equation, after one
iteration, takes the form

W
L= max

1≤i≤b
min

1≤j≤b
TiTjWi,j , (4.4)

with i.i.d. copies Wi,j of W , and that (4.4) is obviously a special case of (2.1) when T1 = · · · =
Tb := −ξ1/2, in which (4.2) becomes

W
L= max

1≤i≤b
−ξ1/2Wi = −ξ1/2 min

1≤i≤b
Wi. (4.5)

Thus, we have Fmax
T ⊂ Fg,ξ in this case, where g(x) = (1 − (1 − x)b)b, and as a consequence

an exhaustive description of Fmax
T is now rather straightforward to obtain with the help of

Theorem 2.1 and Proposition 4.1. In particular, Theorem 4.2 provides an affirmative answer
to the question of whether nontrivial solutions to (4.2) exist, though for a special case only. Its
proof is again deferred to Section 5. Recall from Section 1 that α denotes the unique fixed point
of g in (0, 1) and observe that α = 1 − ν = νb for ν as given in Proposition 4.1.

Theorem 4.2. In the situation of Proposition 4.1 further suppose that T1 = · · · = Tb < 0 and
set ξ := T 2

1 . Let g(x) = (1 − (1 − x)b)b and F+ be defined as in Section 2 with t0 = 1. Then
the following assertions hold true.

https://doi.org/10.1239/jap/1189717531 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1189717531


596 G. ALSMEYER AND M. MEINERS

(a) If ξ < 1, then Fmax
T = {δ0}.

(b) If ξ = 1, then Fmax
T = {αδ−a + (1 − α)δa : a ≥ 0}.

(c) If ξ > 1, there is a one-to-one correspondence between Fmax
T and F+ in the sense that

any F ∈ Fmax
T is of the form

F(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

gn

(
f+

(
t

ξn

))
if t > 0,

F̄

(( −t

ξ1/2

)
−

)b

if t < 0,

α if t = 0 and f+(1) < 1,

1 if t = 0 and f+(1) = 1,

(4.6)

for some f+ ∈ F+, where n ∈ Z is the unique integer satisfying 1 ≤ t/ξn < ξ , if t > 0.

If f+(1) < 1 in (4.6) and thus F �= δ0, we can easily check that F = (1 − α)F+ + αUT F+
with F+ being the normalized restriction of F to the positive halfline. Defining F− as in
Section 2 with s0 = −1, we further see that, in the formulation of Theorem 2.1, the distribution
of F as an element of Fg,ξ corresponds to the pair (f−, f+) with f−(s) := F̄ ((−s/ξ1/2)−) for
s ∈ [−ξ, −1). Thus, while any choice of (f−, f+) ∈ F− × F+ determines an element of Fg,ξ

via (2.1), only those with f+ ∈ F+ and f−, as specified above, are elements of Fmax
T as well.

After these observations, let us finally turn to the question of whether the unique holomorphic
solution F ∗ ∈ Fg,ξ defined in Theorem 1.2 (where ξ = g′(α)) is also an element of Fmax

T .
Rewriting the pertinent fixed-point equation (4.5) in terms of distribution functions this requires
that

F ∗(t) =
(

1 − F ∗
( −t

ξ1/2

))b

(4.7)

for all t ∈ R. The positive answer is given by the following result which, unlike the previous
ones, will be proved in Section 6 together with Theorem 1.2.

Theorem 4.3. In the situation of Theorem 1.2, the holomorphic solution F ∗ to (1.3) is also a
solution to (4.7).

5. Proofs of the results in Sections 2–4

In order to describe Fg,ξ for any g ∈ G and ξ > 1, the following simple lemma elucidates
the relevance of c0, c1 ∈ Lg .

Lemma 5.1. Let g ∈ G and ξ > 1. Then any F ∈ Fg,ξ satisfies the following assertions:

(a) F(0−) ∈ {0, c0} and F(0) ∈ {c1, 1}.
(b) F(t) ∈ [0, c0) for all t < 0 and F(t) ∈ (c1, 1] for all t > 0.

(c) If g(x) > x for 0 < x < c0, then F(t) = 0 for t < 0.

(d) If g(x) < x for c1 < x < 1, then F(t) = 1 for t > 0.

Proof. To prove (a) and (b) first note that F(0−) and F(0) ∈ Lg follow immediately from
(2.2) by letting t ↑ 0 and t ↓ 0, respectively, there and using the continuity of g. But if
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F(0−) �= 0, then F(0−) = c0 because otherwise F(t) ∈ [c0, F (0−)) for some t < 0 which
in turn would yield the following contradiction:

0 = F(−∞) = lim
n→∞ F(tξn) = lim

n→∞ gn(F (t)) ≥ lim
n→∞ g(c0) = c0.

Thus, we see that F(0−) ∈ {0, c0} and also that 0 ≤ F(t) < c0 for all t < 0. A similar
argument shows the assertions for F(0).

The proof of (c) follows from the fact that if g(x) > x for 0 < x < c0 then F(t) > 0 for
t < 0 would give F(ξt) = g(F (t)) > F(t), which is clearly impossible.

The proof of (d) follows from the fact that if g(x) < x for c1 < x < 1 then F(t) < 1 for
t > 0 would give F(ξt) = g(F (t)) < F(t), which again is impossible.

Proof of Theorem 2.1. We infer directly from the previous lemma, parts (c) and (d), that
Fg,ξ = ∅ in case (iv), and that in cases (ii) and (iii) any solution F ∈ Fg,ξ must respectively
vanish on the negative and positive halfline. In what follows we restrict ourselves to the proof
of case (i), as the arguments in cases (ii) and (iii) are similar. Thus, let 0 < c0 ≤ c1 < 1.

We check first that any F of the form of (2.4) with (f−, f+) ∈ F− × F+ is an element of
Fg,ξ , that is, it satisfies the fixed-point equation (2.2) and forms a distribution function. The first
property is evident by the definition of F . As for the second, we obtain that F is right continuous
and nondecreasing on each interval [ξnt0, ξ

n+1t0), n ∈ Z, because it is the composition of the
nondecreasing, right-continuous functions gn and f+ there. Now condition (2.3) ensures the
asserted monotonicity of F on the whole positive halfline. By a similar argument, we infer that
F is also nondecreasing and right continuous on (−∞, 0).

As F is nondecreasing on R \ {0} and takes values only in [0, 1], we infer that

q−∞ := lim
t→−∞ F(t), q0 := lim

t↓0
F(t), and q∞ := lim

t→∞ F(t)

all exist. Moreover, by continuity of g,

q∞ = lim
n→∞ F(ξnt0) = lim

n→∞ gn(f+(t0)) = lim
n→∞ g

(
lim

n→∞ gn−1(f+(t0))
)

= g(q∞),

i.e. q∞ ∈ Lg . As g is strictly increasing and f+(t0) > c1, we arrive at q∞ = 1. Analogous
arguments lead to q−∞ = 0 and q0 = F(0), so that F ∈ Fg,ξ .

Conversely, if F ∈ Fg,ξ , the task is to show that (f−, f+) := (F |[ξs0,s0), F |[t0,ξ t0)) consti-
tutes an element of F− × F+ for which F(ξs0) ∈ [0, c0) and F(t0) ∈ (c1, 1] must be verified.
We do so for the last relation only. But F(t0) ≤ c1 would imply the following contradiction:

1 = lim
n→∞ F(ξnt0) = lim

n→∞ gn(F (t0)) ≤ lim
n→∞ gn(c1) = c1 < 1,

where the monotonicity of g has been utilized. This completes the proof.

Proof of Theorem 2.2(a). By assumption, we have f+(ξ t0) = g(f+(t0)) and, thus, we can
infer the continuity of F on [t0, ξ t0]. Repeated application of (2.2) then yields the continuity of
F on (0, ∞) since compositions of continuous functions are continuous; analogously we can
deduce the continuity of F on (−∞, 0). The continuity of F at 0, in fact, the left continuity of
F at 0 remains to be proved but can easily be deduced from the stated conditions. Details are
therefore omitted.
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Proof of Theorem 2.2(b). The cases f−(s0) = 0 and f+(t0) = 1 are trivial and are ruled
out in what follows. Suppose f−(s0) > 0 and f+(t0) < 1. As compositions of differ-
entiable functions are differentiable, it suffices to check differentiability at points from the set
{ξns0|n ∈ Z}∪{ξnt0|n ∈ Z}∪{0} (bearing in mind that g−1 is differentiable on (0, c0)∪(c1, 1)).
For the sake of brevity we restrict ourselves to the points ξnt0 for n ∈ Z and begin with the case
in which n = 1. The assumption that f ′+(ξ t0) = ξ−1g′(f+(t0))f

′+(t0) yields equality of the
left-hand derivative and the right-hand derivative of F in ξ t0 and, therefore, the differentiability
of F in ξ t0. By writing F = gn−1 ◦ F(·/ξn−1) we get the differentiability of F in ξnt0 (n ∈ Z)
and for this reason on (0, ∞).

Proof of Theorem 3.1. Let p > 0, F ∈ Fg,ξ , and W denote a random variable with this
distribution function. Then a standard estimation together with an iterated application of (2.2)
leads to

E(W+)p =
∫ ∞

0
ptp−1 P(W > t) dt

≤ P(W > 0) +
∑
n≥0

(ξp(n+1) − ξpn) P(W > ξn)

≤ 1 + (ξp − 1)
∑
n≥0

ξpn(1 − gn(F (1)))

as well as
E(W+)p ≥ (ξp − 1)

∑
n≥0

ξpn(1 − gn+1(F (1))).

Similarly, for the negative part we have

(ξp − 1)
∑
n≥0

ξpngn+1(F (−1)) ≤ E(W−)p ≤ 1 + (ξp − 1)
∑
n≥0

ξpngn(F (−1)). (5.1)

The proof of (a) is as follows. If p0 > 0, then g′(0) = ξ−p0 < 1 and thus g(x) < x on
(0, c0). Hence, F−

g,ξ �= ∅ by Theorem 2.1. Now let F ∈ F−
g,ξ and p < p0. Then g′(0) < ξ−p,

and we may invoke Lemma A.1(b) (with q0 = 0) to infer, for some ζ ∈ (ξp, 1/g′(0)),

ζ ngn(F (−1)) = ζ nF (ξ−n) → 0

as n → ∞, which in combination with (5.1) gives F ∈ M
−
p .

The proof of (b) is as follows. If p > p0, then g′(0) > ξ−p and, by another appeal to
Lemma A.1(b), we can choose ζ ∈ (1/g′(0), ξp) such that

ζ ngn(F (−1)) = ζ nF (ξ−n) → ∞
as n → ∞. But this implies the lower bound for E(W−)p in (5.1) to be infinite as we can easily
assess.

The proofs of (c) and (d) are analogous to the proofs of (a) and (b). Therefore, we omit
further details.

Proof of Proposition 3.1. Fix any s > 0. Since �F (s) = ∫ ∞
0 F̄ (s−1 log t) dt , we will study

the finiteness of I (s) = ∫ ∞
es F̄ (s−1 log t) dt . By recalling gk(F (1)) = F(ξk) and using the fact

that log t/s = ξk holds if and only if t = esξk
for k ∈ N0 and t ≥ es , we infer that

I (s) ≤
∑
k≥0

(esξk+1 − esξk

)F̄ (ξk) =
∑
k≥0

(esξk+1 − esξk

)(1 − gk(F (1)))
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and conversely that

I (s) ≥
∑
k≥0

(esξk+1 − esξk

)F̄ (ξk+1) =
∑
k≥0

(esξk+1 − esξk

)(1 − gk+1(F (1))).

This yields assertion (3.1) for positive s because esξk+1 − esξk = esξk+1
(1 − (e−sξk

)ξ−1) ∼
esξk+1

as k → ∞. The case of negative s is treated similarly.

Proof of Theorem 4.1. In view of Proposition 3.1, a proof of parts (a) and (b) requires an
analysis of the rate of convergence of gk(F (1)) towards 1 and thus of the function g in a left
neighborhood of 1. Parts (c) and (d) are then obtained in a similar manner by an analysis of the
rate of convergence of gk(F (−1)) towards 0 and thus of g in a right neighborhood of 0. This
will be omitted.

We start by observing that, with m = min(m1, . . . , mn),

1 − g(x) = 1 −
n∏

i=1

(1 − (1 − x)mi ) = (1 − x)mg1(x),

where g1 is a polynomial satisfying g1(1) ≥ β := |{j : mj = m}|. Consequently, for some
ε ∈ (0, 1) and all x ∈ [1 − ε, 1],

β

2
(1 − x)m ≤ 1 − g(x) ≤ 2β(1 − x)m. (5.2)

Fix k0 ∈ N so large that 1−gk0(F (1)) < min(ε, (2β)−1), thus 	 := log[2β(1−gk0(F (1)))] <

0. Then, for all k > k0,

1 − gk(F (1)) ≤ 2β[1 − gk−1(F (1))]m
≤ · · · ≤ (2β)1+m+···+mk−k0−1 [1 − gk0(F (1))]mk−k0

≤ [
2β(1 − gk0(F (1)))]mk−k0

,

and therefore

esξk+1
(1 − gk(F (1))) ≤ exp

(
mk

(
sξ

(
ξ

m

)k

+ 	

mk0

))
.

Now it is easily seen that
∑

k esξk+1
(1 − gk(F (1))) < ∞ for all s > 0, if ξ < m, and for s in

a right neighborhood of 0, if ξ = m. By now applying Proposition 3.1, (a) is proved.
Turning to (b), we have by Lemma 5.1 that F(1) ∈ (c1, 1) if F has positive mass on (0, ∞).

By using the left-hand inequality in (5.2), we obtain upon iteration

1 − gk(F (1)) ≥
(

β

2

)1+m+···+mk−k0−1

[1 − gk0(F (1))]mk−k0 ≥ exp(	′mk−k0)

for all k > k0 and a suitable 	′ < 0. Hence, if ξ > m, we obtain, for each s > 0,

lim inf
k→∞ esξk

(1 − gk(F (1))) ≥ lim
k→∞ exp

(
mk

(
s

(
ξ

m

)k

+ 	′

mk0

))
= ∞,

and thus, by applying Proposition 3.1 again, �F (s) = ∞.
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Proof of Theorem 4.2. Recall that here T1 = · · · = Tb < 0, g(x) = (1 − (1 − x)b)b,
ξ = T 2

1 , and that Fmax
T ⊂ Fg,ξ . It is not difficult to check, for all three cases, that any F

of the asserted form is indeed an element of Fmax
T . Therefore, we only prove that this form is

also necessary.
The proof of (a) is as follows. If F ∈ Fmax

T and ξ < 1, then

F(t) = gn

(
F

(
t

ξn

)) ⎧⎪⎪⎨
⎪⎪⎩

≥ F

(
t

ξn

)
→ 1 if t > 0,

≤ F

(
t

ξn

)
→ 0 if t < 0, as n → ∞,

implying F = δ0.
The proof of (b) is as follows. If F ∈ Fmax

T \ {δ0} and ξ = 1, then F(t) ∈ Lg = {0, α, 1}
for all t ∈ R and F(0) = α. Consequently, F = αδa′ + (1 − α)δa for suitable a′ ≤ 0 < a.
Now use (4.5) with ξ = 1 to infer that (with W

L= F )

P(W = x) = P
(

min
1≤i≤b

Wi = −x
)

for each x and thus a′ = −a.
The proof of (c) is as follows. If F ∈ Fmax

T and ξ > 1, then F is also an element of Fg,ξ

whence, by Theorem 2.1 (case (i)), there exists f+ ∈ F+ such that F is of the asserted form
for t ≥ 0. But F(t) for t < 0 is then necessarily of the asserted form by Proposition 4.1.

6. Proofs of Theorem 1.2 and Theorem 4.3

Throughout this section we always assume that g(x) = (1 − (1 − x)b)b for some b ≥ 2
with unique fixed point α ∈ (0, 1). Recall from Section 1 that ξ = g′(α) > 1 and that (an)n≥0
is recursively defined by a0 = α, a1 = 1, and (see (1.6))

an = 1

ξn − ξ

b2∑
k=2

ck

∑
j1+···+jk=n,
j1≥1,...,jk≥1

aj1 · · · ajk

for n ≥ 2, where c0, . . . , cb2 are the coefficients of g in its polynomial expansion about α.
Finally, let F ∗ be the limiting distribution function given in Theorem 1.1 by which we already
know that F ∗ is continuous and satisfying 0 < F ∗ < 1, F ∗(0) = α, and (1.3).

Let Sg,ξ be the operator on the set of distribution functions on R which maps F to g(F (·/ξ)).
Then F is a fixed point for Sg,ξ , i.e. Sg,ξ (F ) = F , if and only if F solves (1.3). Furthermore,
the convergence statement of Theorem 1.1 may then be restated as

lim
n→∞ Sn

g,ξ (Fα) = F ∗, (6.1)

with Fα being the uniform distribution on (−α, 1 − α) and the limit being taken in the sense
of weak convergence. Crucial for our proof of Theorem 1.2 below is the following extension
of (6.1) on the behavior of Sn

g,ξ (F ) for distribution functions F having a left- and a right-hand
derivative at 0.
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Proposition 6.1. Let F be any distribution function with F(0) = α and with left- and right-
hand derivatives c− and c+, respectively, at 0. Then Sn

g,ξ (F ) converges weakly to a limiting
distribution function G if and only if c− and c+ are both positive, in which case

G(t) = F ∗(c−t) 1(−∞,0)(t) + F ∗(c+t) 1[0,∞)(t), t ∈ R.

Note that, if W ∗ denotes a random variable with distribution function F ∗, then G is the
distribution function of c−1+ (W ∗)+ − c−1− (W ∗)−.

Proof. Set Gn := Sn
g,ξ (F ) with F as stated. Since G is continuous we must prove that

Gn(t) → G(t) for all t ∈ R and must do this for the cases in which t < 0 and t ≥ 0 separately.
However, we will only consider the case in which t ≥ 0 because the arguments in the other
case are analogous.

By assumption on F ,
F(s) = α + c+s + r(s)

for all s ≥ 0, where s−1r(s) → 0 as s ↓ 0. Fix ε > 0 and then δ > 0 small enough so that
r(s) ≤ εs for s ∈ [0, δ]. It follows, for all n, t such that t/ξn ≤ δ and (c+ + ε)t/ξn ≤ 1 − α,
that

Gn(t) = gn

(
F

(
t

ξn

))
≤ gn

(
α + (c+ + ε)t

ξn

)
= gn

(
Fα

(
(c+ + ε)t

ξn

))

and, then, by applying Theorem 1.1 (or (6.1)) it follows that

lim sup
n→∞

Gn(t) ≤ F ∗((c+ + ε)t) for all t ≥ 0. (6.2)

But ε > 0 was chosen arbitrarily and F ∗ is continuous, whence (6.2) persists to hold with
ε = 0, that is

lim sup
n→∞

Gn(t) ≤ F ∗(c+t) for all t ≥ 0. (6.3)

Now, if c+ = 0 then F ∗(0) = α < 1 shows that Gn cannot converge to a proper distribution
function. So, c+ > 0 is necessary for Gn → G and supposed hereafter. Fix any ε ∈ (0, c+)

and then δ > 0 such that r(s) ≥ −εs for s ∈ [0, δ]. It follows, for all n, t such that t/ξn ≤ δ

and (c+ − ε)t/ξn ≤ 1 − α, that

Gn(t) = gn

(
F

(
t

ξn

))
≥ gn

(
α + (c+ − ε)t

ξn

)
= gn

(
Fα

(
(c+ − ε)t

ξn

))
.

Hence, by applying Theorem 1.1 again and upon letting ε tend to 0, we infer that

lim inf
n→∞ Gn(t) ≥ F ∗(c+t) for all t ≥ 0,

which in combination with (6.3) yields Gn(t) → G(t) for t ≥ 0.

Proof of Theorem 1.2. The first step is to show that H(z) := ∑
n≥0 anz

n, z ∈ C, defines
an entire function satisfying H(z) = g(H(z/ξ)). In a second step we must verify that its
restriction to the real line constitutes a distribution function and thus a C∞-solution to (1.3).
Finally, the uniqueness of H as a solution to (1.3) satisfying H(0) = α and H ′(0) = 1 must
be shown, thus giving H = F ∗.

https://doi.org/10.1239/jap/1189717531 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1189717531


602 G. ALSMEYER AND M. MEINERS

Set a
(γ )
n := anγ

n for n ∈ N0 and γ > 0. Note that (a
(γ )
n )n≥0 satisfies the same recursion as

(an)n≥0, but with initial values a
(γ )
0 = α and a

(γ )
1 = γ . For n ≥ 2, we have

|a(γ )
n | = 1

ξn − ξ

∣∣∣∣
b2∑

k=2

ck

∑
j1+···+jk=n

a
(γ )

j1
· · · a(γ )

jk

∣∣∣∣
≤ 1

ξn − ξ

b2∑
k=2

|ck|
(

n − 1

k − 1

)
max{|a(γ )

1 |, . . . , |a(γ )
n−1|}k

≤ 1

ξn − ξ
max{1, |a(γ )

1 |, . . . , |a(γ )
n−1|}b

2
p(n),

(6.4)

where p(n) := ∑b2

k=2 |ck|
(
n−1
k−1

)
is a polynomial in n ∈ N. Choose n0 ∈ N so large that

p(n) ≤ ξn − ξ for all n ≥ n0 and then fix γ ∈ (0, 1) small enough such that

max{|a(γ )
1 |, . . . , |a(γ )

n0−1|} ≤ 1.

Then (6.4) obviously implies that |a(γ )
n | ≤ 1 for all n ≥ 0 and thus that the power series∑

n≥0 a
(γ )
n zn converges in the unit disk {z ∈ C : |z| < 1}. As an = a

(γ )
n γ −n for all n ≥ 0, this

is equivalent to H(z) being well-defined as a convergent power series in {z ∈ C : |z| < γ }.
From the recursion, (1.6), in combination with c1 = g′(α) = ξ , we infer, for n ≥ 2, that

an = 1

ξn − ξ

b2∑
k=1

ck

∑
j1+···+jk=n

aj1 · · · ajk
− ξ

ξn − ξ
an,

and thereupon that

an = ξ−n
b2∑

k=1

ck

∑
j1+···+jk=n

aj1 · · · ajk
.

Consequently, we have, for |z| < γ ,

H(z) − α =
∑
n≥1

anz
n =

∑
n≥1

b2∑
k=1

ck

∑
j1+···+jk=n

aj1 · · · ajk

(
z

ξ

)n

=
b2∑

k=1

ck

∑
j1≥1

· · ·
∑
jk≥1

aj1

(
z

ξ

)j1

· · · ajk

(
z

ξ

)jk

=
b2∑

k=1

ck

(
H

(
z

ξ

)
− α

)k

= g

(
H

(
z

ξ

))
− α,

that is H(z) = g(H(z/ξ)) for |z| < γ . But this functional equation yields, upon iteration,
that, as claimed, H extends to a holomorphic function in the entire complex plane satisfying
the very equation everywhere.
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Since H(0) = α ∈ (0, 1) and H ′(0) = 1 we have that H defines a strictly increasing
C∞-function in (−ε, ε) for some ε > 0. Fix any s0 < 0 < t0 such that [ξs0, s0] ∪ [t0, ξ t0] ⊂
(−ε, ε) as well as 0 < H(s0) < α < H(t0) < 1. Let f− and f+ denote the restrictions of H

to [ξs0, s0] and [t0, ξ t0], respectively. Then (f−, f+) ∈ F− × F+ with F− and F+ as defined
in Section 2. Hence, by Theorem 2.1, this pair defines a distribution function via (2.4) which
forms a solution to (1.3). But this function is clearly the function H restricted to the real line
because this restriction also satisfies (1.3) as stated above. We have thus completed the second
step of the proof.

In order to conclude H = F ∗ on R, we may invoke Proposition 6.1 with F = H and thus
c− = c+ = 1 to infer that

H = Sn
g,ξ (H) → F ∗, n → ∞,

which gives the result.
Finally, we must argue that �F ∗(t) is finite for all t ∈ R. An elementary but tedious

calculation carried out in [5] showed that ξ = g′(α) < b. Hence, we arrive at the desired
conclusion by an appeal to Theorem 4.1(a) and (c) with n = m1 = · · · = mn = b ≥ 2.

Proof of Theorem 4.3. Defining ĝ(x) := (1 − x)b and

Sĝ,ξ1/2(F )(t) :=
(

1 − F

( −t

ξ1/2

)
−

)b

for distribution functions F , we must obviously prove that Sĝ,ξ1/2(F ∗) = F ∗. Now we use the
facts that Sg,ξ = S2

ĝ,ξ1/2 and Sg,ξ (F
∗) = F ∗ to infer that

S2n+1
ĝ,ξ1/2(F

∗) = Sĝ,ξ1/2(Sn
g,ξ (F

∗)) = Sĝ,ξ1/2(F ∗) (6.5)

for all n ≥ 0. On the other hand, Proposition 6.1 implies that

S2n+1
ĝ,ξ1/2(F

∗) = Sn
g,ξ (Sĝ,ξ1/2(F ∗)) → F ∗ (weakly)

as n → ∞, if we can verify that G := Sĝ,ξ1/2(F ∗) is a distribution function having G(0) = α

and derivative 1 at 0. Together with (6.5) this clearly gives the desired conclusion.
To prove G′(0) = 1 for G(t) = (1 − F ∗(−t/ξ1/2))b (no left-hand limit is needed here as

F ∗ is continuous), we note that

G′(t) = b

ξ1/2 F ∗′
( −t

ξ1/2

)(
1 − F ∗

( −t

ξ1/2

))b−1

,

and, thus, obtain G′(0) = b(1 − α)b−1/ξ1/2, as F ∗(0) = α and F ∗′
(0) = 1. So, it remains to

verify that ξ1/2 = b(1 − α)b−1. But recalling that ν = 1 − α solves the equation ν + νb = 1
this follows from

ξ = g′(α) = b2(1 − α)b−1(1 − (1 − α)b)b−1 = b2(1 − α)2b−2.

Finally, noting that G(0) = (1 − F ∗(0))b = (1 − α)b = α the proof is complete.
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7. Concluding remarks

We have seen that the maximin fixed point equations studied in this article are closely
related to the iterations of certain strictly increasing continuous functions g : [0, 1] → [0, 1]
with g(0) = 0 and g(1) = 1. In fact, g is simply a polynomial if the number of involved
maxima and minima in the pertinent maximin equation is not random as is the case in our
main application of game tree evaluation described in the introduction. We have chosen the
class G of functions g so as to meet two competing goals. On the one hand, we wanted to
cover a relatively wide class of maximin equations, including (1.4) and (2.1), and to study them
within a unified framework. On the other hand, we wanted to keep technicalities as well as the
number of cases to be discussed separately at a comprehensive level. A thorough analysis of the
equation F(t) = g(F (t/ξ)) for general increasing and continuous functions g : [0, 1] → [0, 1]
with g(0) = 0 and g(1) = 1, in which case Lg \ {0, 1} could be either a void or a finite or
infinite subset of (0, 1), would have required various partly tedious discussions of extra cases
without gaining much additional insight. We should mention, however, that this would have
included the pure max-type and min-type equations

W
L= ξ max

1≤i≤b
Wi and W

L= ξ min
1≤i≤b

Wi, ξ > 1, b ∈ N,

pertaining to g(x) = xb and g(x) = 1 − (1 −x)b, respectively, neither of which have any fixed
points between 0 and 1. For such g that are either strictly smaller or larger, respectively, than
the identity function on (0, 1), a one-to-one correspondence between Fg,ξ and F−, respectively
F+ can be shown fairly easily by similar arguments as in the proof of Theorem 2.1.

We have shown that the maximin equation (2.1) with n = m1 = · · · = mn = b ≥ 2 yields
upon one iteration of the pure min-type equation (4.5) with negative scaling factor −ξ1/2. We
have further shown that the holomorphic solution F ∗ of (2.1) in that case also solves (4.5), and
thus (4.7) in terms of distribution functions (Theorem 4.3). As

F ∗(t) =
∑
n≥0

anx
n,

with a0 = 1, a1 = α (Theorem 1.2), the latter equation takes the form

∑
n≥0

anx
n =

(
1 −

∑
n≥0

an

(−1)n

ξn/2 xn

)b

, (7.1)

which may be used to provide a simplified recursion for the an, as opposed to using (1.6), via
a comparison of coefficients of the power series on the left- and right-hand side of (7.1). This
has been done by the second author in [5], the result being

an = (−1)nξ−n/2

1 + (−1)nξ−(n−1)/2

( b∑
k=2

ĉk

∑
j1+···+jk=n,
j1≥1,...,jk≥1

aj1 · · · ajk

)
,

where ĉ0, . . . , ĉb are the coefficients of ĝ(x) = (1 − x)b in its expansion about α. Note that
the sum in this recursion involves only b − 1 terms while that in (1.6) has b2 − 1 terms.
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Appendix A. Fixed points of real functions on the unit interval

The following simple lemma collects some basic convergence properties of the functions g

considered in this article and is stated without proof.

Lemma A.1. Let g : [0, 1] → R be nondecreasing and continuously differentiable and further-
more let 0 ≤ q0 < q1 ≤ 1 be two fixed points of g such that g(x) �= x for q0 < x < q1.

(a) If g(x) > x on (q0, q1) then

lim
n→∞ sup

q≤x≤q1

γ −n|q1 − gn(x)| = 0

for each γ > g′(q1) and q ∈ (q0, q1]. If g′(q1) > 0 then, furthermore,

lim
n→∞ inf

q0≤x≤q
β−n|q1 − gn(x)| = ∞

for each 0 < β < g′(q1) and q ∈ [q0, q1).

(b) If g(x) < x on (q0, q1) then

lim
n→∞ sup

q0≤x≤q
γ −n

∣∣q0 − gn(x)
∣∣ = 0

for each γ > g′(q0) and q ∈ (q0, q1]. If g′(q0) > 0 then, furthermore,

lim
n→∞ inf

q≤x≤q1
β−n|q1 − gn(x)| = ∞

for each 0 < β < g′(q1) and q ∈ [q0, q1).

Our second lemma shows that the function g pertaining to the maximin equation (2.1) has
exactly one fixed point in (0, 1).

Lemma A.2. Given any n, m1, . . . , mn ≥ 2, the polynomial g(x) = ∏n
i=1(1 − (1 − x)mi ) has

exactly one fixed point in (0, 1) and further satisfies g′(0) = g′(1) = 0.

Proof. Without loss of generality let m1 ≤ m2 ≤ · · · ≤ mn. It is immediate from

g′(x) =
n∑

i=1

(
mi(1 − x)mi−1

∏
j �=i

(1 − (1 − x)mj )

)

that g′(0) = g′(1) = 0 because n, m1, . . . , mn > 1. As a consequence, there must be at least
one c ∈ (0, 1)∩Lg . After some elementary algebra we find that g(1−x) = 1−x for x ∈ (0, 1)

holds if and only if

m1−1∑
k=0

xk = 1 − xm1

1 − x
=

n∏
j=2

1

1 − xmj
=

∑
k2,...,kn≥0

xk2m2+···+knmn.

Now observe that the left-hand sum constitutes the generating function of the counting measure
λ1, say, on {0, . . . , m1 − 1}, while the right-hand sum is the generating function of an infinite
measure λ2 on N0 which puts mass 1 at 0 but no mass on {1, . . . , m1 − 1} as m1 ≤ m2 ≤
· · · ≤ mn. As a consequence, the signed measure λ1 − λ2 has 0 mass at 0, mass 1 at each
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k = 1, . . . , m1−1, and either mass 0 or nonpositive mass less than or equal to −1 at each k ≥ m1
(the latter occurring infinitely often). This shows that �(n) := (λ1 − λ2)({0, . . . , n}), n ≥ 0,
is unimodal with �(0) = 0, �(1) = 1, and limn→∞ �(n) = −∞. We will now argue that

m1−1∑
k=0

xk −
∑

k2,...,kn≥0

xk2m2+···+knmn = (1 − x)
∑
n≥1

�(n)xn

has a unique root x∗ in (0, 1) so that 1 − x∗ constitutes the unique fixed point of g in (0,1).
Define

H(x) :=
∑
n≥1

�(n)xn =
m∗−1∑
n=1

|�(n)|xn −
∑

n≥m∗
|�(n)|xn, x ∈ [0, 1),

where m∗ := inf{n : �(n) < 0} ≥ m1 ≥ 2, and note that

xH ′(x) − m∗H(x) =
m∗−1∑
n=1

(n − m∗)|�(n)|xn −
∑

n>m∗
(n − m∗)|�(n)|xn ≤ −x

for x ∈ [0, 1). Since H(0) = 0, H ′(0) = �(1) = 1, and limx↑1 H(x) = −∞, there is at least
one root x∗ in (0,1). By the previous inequality, we also have H ′(x∗) ≤ −1 and thus H(x) < 0
in a right neighborhood of x∗. But if H(x) < 0 for x ∈ (0, 1), then H ′(x) ≤ x−1m∗H(x) < 0,
and this implies that H(x) < 0 for all x ∈ (x∗, 1) and thus the asserted uniqueness of x∗.
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