Crystal Clear

We use clear, transparent glass for many things, from window glass and fine crystal goblets to thermometer tubes. Glassmaking is an ancient art, but *colorless* glass is a relatively recent development.

Since the beginning of civilization, people have known about two types of naturally occurring glass. When lightning strikes sand, the heat can fuse the silica grains into long slender glass tubes that are known as "petrified lightning," or fulgurites. The heat and pressure of a volcanic eruption can fuse sand and rock into a black glass called "obsidian."

As early as about 3000 B.C., some artisans discovered how to make their own forms of glass as glazes on ceramic vessels. The art of glass manufacture reached great heights during the Roman empire, but many of the techniques were lost during the Dark Ages.

Simple fused-silica glass can be made by melting sand alone. This makes finequality glass, but it is very difficult to manufacture because the melting point of sand is 1723°C, a temperature higher than most furnaces can reach. Adding a flux of soda ash (sodium carbonate), though, reduces the melting point to only 850°C, a temperature much more easily attainable to early societies. Unfortunately the resulting glasses are relatively water soluble, making them impractical for many uses.

The addition of a small amount of calcium carbonate, from limestone, to the mixture makes the glass insoluble again and suitable for many purposes. These "soda-lime" or "crown" glasses are the most common types produced even today, accounting for about 90% of current glass manufacture.

The basic ingredients of glass—sand, ash, and lime—were readily available to early societies, but many natural impurities affected the transparency and color of the resulting material. The contaminants varied from region to region, allowing each local glassmaker to claim a characteristic product. Crude manufacturing techniques also left streaks and bubbles in the glass, further decreasing its clarity.

Glassmaking underwent a tremendous resurgence in Venice in the 13th century, possibly because of revived contact with the Eastern Roman Empire. Not until later, though, did Venetian artisans rediscover how to make transparent and colorless glass. They discovered how to eliminate unwanted colors and contaminants from a glass melt by adding counter-colorizers. The resulting grayish glass, somewhat less transparent than the colored material, proved acceptable if the finished article remained thin—the loss of transparency was less noticeable than the unwanted tint. This cristallo, named because of its resemblance to natural rock crystal, proved to be the greatest export product of the Venetian glassmaking industry.

Cristallo was an extremely ductile material, which cooled quickly and could be blown very thin. The glassmakers' need to work with great speed and dexterity to shape the glass properly influenced the style and shape of Venetian glass objects. For the first half of the 16th century, cristallo glasses remained rather simple, but soon the glass blowers developed great skill and creativity in shaping and decorating their products. They made elaborate toys and wineglasses with intricate decorations; they used tools with diamond points to engrave designs into the clear surface.

Glassmaking is an ancient art, but colorless glass is a relatively recent development.

Venetian glass was superior to that made in other parts of Europe, but glassmaking, like all crafts in Venice, was regulated by strict guilds and considered a state monopoly. The trade secrets were considered so valuable that all the Venice glassworks were removed to the island of Murano as early as 1291. Workers were forbidden to leave the island so they couldn't sell their knowledge elsewhere. (The move to Murano may also have been motivated by the need to protect the city from fires started from the glassmaking furnaces.)

By the 16th century, though, European kings and nobles openly offered handsome rewards for anyone who knew the secrets of Venetian glass manufacture. Many Venetian glassmakers escaped from the island of Murano and fled elsewhere, setting up their own shops in other parts of Europe with substantial support from local noblemen.

In 1575 the Venetian refugee Giacomo Verzellini was granted a 21-year monopoly in London, provided that he make Venetian-type cristallo. Despite Verzellini's monopoly and others like it, however, England remained dependent on imported glass for the next century.

In 1664 the Worshipful Company of Glass Sellers, a group English glass retailers, incorporated to discover ways to overcome foreign domination in their market, and also to express their dissatisfaction with the quality they received. In 1675 the Worshipful Company commissioned chemist and experimenter George Ravenscroft to investigate new glassmaking techniques using local raw materials. The company hoped to create a glass superior to Venetian cristallo, a glass that more closely resembled rock crystal in clarity and transparency, without the gray or brown muddiness seen in much of the Venetian product.

Ravenscroft first attempted to substitute calcined flints instead of sand, and potash instead of soda ash. His "flint glass" was a failure at first, developing many fine cracks as it aged. Ravenscroft added lead oxide to the flux, however, and this proved to be a tremendous success. Not only did the lead oxide eliminate the formation of fine cracks, it produced a high-quality lustrous glass that was also heavy and durable. "Lead glass" was soft enough to be cut and engraved easily. It had a greater refractive power than common crown glass and a somewhat greater light-dispersion properties than other types of glass.

The Worshipful Company of Glass Sellers then set exacting standards for the production of lead glass as they began to export English glass to foreign markets. In honor of Ravenscroft's work, their earliest glassware bears an engraved raven's head. Ravenscroft's glass is what we generally refer to today as "crystal" or "lead crystal." The term "flint glass" is also sometimes used, though flint is no longer included as a base for its manufacture.

English lead glass quickly superseded conventional Venetian cristallo, and within a short time only a few provincial centers continued to make the less-satisfactory Venetian-style glass. By the 18th century, lead glass had become the favorite in all European markets, and England had become the world's leading glass producer. Makers of lead glass produced chandeliers, bowls, candlesticks, mugs, and cups, but their primary product was wine glasses, whose style evolved and influenced all other manufacturers of tableware.

Crown glasses—made from sand, soda ash, and lime—account for most current

glass production. Lead crystal, although more expensive to produce, is easier to melt and fabricate. A high concentration of lead oxide in the flux and a relatively low alkaline content imparts desirable electrical properties to the glass. Lead glass has been widely used in radio and television tubes, in capacitors, and as insulating parts in electric lamps. Lead glass has also been used for prisms and lenses. Telescope makers found that overlapping a lead glass lens with a regular crown glass lens could eliminate most of the chromatic aberration around the telescopic images of bright objects. Lead glass absorbs most ultraviolet light but little visible light, also an advantage in telescope lenses.

The fine crystal in your house, the wedding gift that gathers dust on the high shelf and is taken down only for special occasions, has its own long tradition. But apart from glamorous tableware, brilliant chandeliers and art objects, lead glass has found many other uses in the three centuries since its creation. The science of glasses has branched out enormously, producing many new types for specialized applications. In addition to the basic silica glasses, we now have oxynitride glasses, phosphate glasses, chalcogenide glasses, halide glasses, and others. Materials researchers have developed glassy substances for particular uses, depending on thermal expansion requirements, preparation and softening temperatures, melt viscosities, and chemical compatibilities. No longer are glasses used simply for containers, windows, mirrors, and lenses; current applications have expanded to include fiber optics, thin films, and semiconductor and biological uses. Many applicationsand many new types of glassy materialscontinue to be developed each year.

KEVIN J. ANDERSON

Editor's Note: For more on today's "science" of glasses, see the *MRS BULLETIN* focus issue on this subject, Vol. XII No. 5, 1987.

Workshop on Tungsten and Other Advanced Metals for ULSI Applications VII

October 22-24, 1990, in Dallas, Texas

Announcement and Call for Papers

T his workshop is the seventh in a series organized to bring together active researchers in the field of advanced metallization for IC applications.

Papers are solicited on:

LPCVD modeling and deposition techniques Selective, planarized horizontal interconnect/prepatterning techniques Contact plug and via fill applications Nucleation and compatibility studies Adhesion to thermal and CVD oxides Refractory metal gate development Selective cladding of sources, drains, gates, interconnects Tungsten interconnects CVD reactor design enhancement Deposition kinetics Wafer temperature measurement and control Effect of CVD gas chemistry and impurities on selectivity CVD precursor development

Abstracts are due July 15, 1990

Grain refinement/roughness control Fundamental surface chemistry Film properties (physical, chemical, electrical) Selectivity enhancers and inhibitors Performance/reliability Process control/manufacturability Film/substrate interaction Diffusion barriers, etch barriers New device structures Buried layer conductor techniques Microsensor and other novel applications Backside deposition prevention Patterning and etching of refractory metals Thermal stability/high temperature applications

Send abstracts (at least 500 words, typed, double-spaced, with an additional page of figures) to Gregory C. Smith, Texas Instruments, Incorporated, P.O. Box 655012, Mail Station 944, Dallas, TX 75265. Include author's name, affiliation, mailing address, and phone number on abstract.

For an announcement:

Call (415) 642-4151, fax (415) 643-8683, or write to Continuing Education in Engineering, University Extension, University of California, 2223 Fulton St., Berkeley, CA 94720.

Continuing Education in Engineering, University Extension, University of California, Berkeley

NOW AVAILABLE!

- Microform copies of the MRS BULLETIN and Journal of Materials Research. Back volumes are available in 16 mm or 35 mm microfilm, or 105 mm microfiche.
- Single Article Reprints from MRS Books.

Order from University Microfilms Inc., 300 North Zeeb Road, Ann Arbor, MI 48106

MRS CORPORATE PARTICIPATION PROGRAM

Organizations interested in influencing the growth and direction of interdisciplinary, basic research in materials are invited to take part in the MRS Corporate Participation Program as Corporate Affiliates. The program links the efforts of two key groups towards advancing development of materials of technological importance—organizations responsible for pioneering development and application of advanced materials and the Materials Research Society, which provides an interdisciplinary forum for the exchange of technical information among materials scientists in industry, government, and academia.

Corporate Affiliates assist the Society through their financial contributions in several ways. Primarily these contributions are used to fund programs for students, such as graduate student awards, travel grants for members of university chapters, short course scholarships, and the Distinguished Lecturer series. In addition, directed contributions frequently help MRS to produce symposia which are thorough interdisciplinary exchanges in new topical areas by providing the seed funding necessary to assist the attendance of key research workers. The nuturing of both student materials and effective programming of new topics is absolutely crucial to the Society. Each Corporate Affiliate is kept abreast of MRS activities in these and other ventures through a corporate representative and copies of the *MRS Bulletin*.

MRS Corporate Affiliates play a vital role in the Society by ensuring that the Society's technical programs are responsive to the interests of the research community and by broadening the financial base of the Society. MRS is the only scientific association devoted to promoting research on materials from a multidisciplinary perspective. The Society's rapid growth since 1973 is due to its unique method of matching the needs of industrial research organizations and to its quick response to changing interests in the materials science community.

MRS Corporate Affiliate Benefits

- A subscription to the MRS BULLETIN, the Society's monthly news publication.
- Recognition of support in all promotional material for MRS Fall and Spring Meetings.
- Advance notification of meeting programs and events.
- Advance consultation on topical program contents.
- Opportunity to purchase symposium proceedings at member prices.
- Opportunity to display corporate literature free of charge at MRS meetings.
- Opportunity to participate in job placement services free of charge at MRS meetings.
- Reduced booth rental rates at MRS equipment exhibits.
- Discounts on advertising in the MRS BULLETIN.
- Corporate profile in the Membership Directory

For further information about the MRS Corporate Participation Program, contact:

Kenneth E. Voss, Chair, Corporate Participation Committee, Engelhard Corporation, Menlo Park, CN28, Edison, New Jersey 08818; telephone (201) 321-5146; fax (201) 321-0334.

or

Mary E. Kaufold, Materials Research Society, 9800 McKnight Road, Pittsburgh, PA 15237; telephone (412) 367-3036; fax (412) 367-4373.

CORPORATE AFFILIATE

Advanced Control Systems Corporation Advanced Energy Industries, Inc. Advanced Micro Devices, Inc. Aerospace Corporation AET addax, Inc. AG Associates Air Products - Diamonex Aixtron GmbH Alcan International Limited Alcatel NV Alcarenty Allied Signal, Inc. American Cyanamid Company American Fly Ash Company Amoco Chemical Corporation Amoco Oil Company Amoco Technology Company Anatech Ltd. APL Engineered Materials, Inc APD Cryogenics Inc. Applied Electron Corporation Applied Materials, Inc. Applied Science and Technology, Inc. (ASTeX) Argonne National Laboratory/IPNS Asahi Glass Company, Ltd. AT&T Bell Laboratories Bell Communications Research, Inc. Billiton Precursors B.V. Blake Industries, Inc. **BP America Research & Development** Brimrose Corporation of America Brookhaven National Laboratory Bruker Instruments Inc Cabot Corporation Cameca Instruments, Inc. Center for Materials Fabrication Chronar Corporation Cober Electronic, Inc. Commonwealth Scientific Corporation Conversion Technology Corporation Corning Glass Works CrystaComm, Inc. Crystallume CVC Products, Inc. David Sarnoff Research Center Denton Vacuum Inc. Deposition Technology Diamond Materials, Inc. Dow Chemical Company Dow Corning Corporation E.I. duPont de Nemours & Company Eaton Corporation EG&G Idaho, Inc. EG&G Princeton Applied Research Electric Power Research Institute (EPRI) Elettrorava S.p.A. Elsevier Science Publishers B.V. **Emcore** Corporation Engelhard Corporation EPI Division Chorus Corporation Charles Evans & Associates Exxon Research & Engineering Co. E.A. Fischione Instruments Manufacturing Ford Motor Company Foster Miller, Inc. Fuji Electric Co., Ltd. Fuji Xerox Co., Ltd. Fujitsu Ltd. Galileo Corporation of America Gas Research Institute Gatan, Inc. Gelest Inc.

General Electric Corporation General Motors Research Laboratories Gerling Laboratories Getty Conservation Institute Glasstech Solar, Inc. (GSI) Goodfellow Corporation Granville-Phillips Company GTE Laboratories, Inc. Heraeus Amersil Hewlett-Packard Company High Voltage Engineering Europa B.V. Hitachi Scientific Instruments Hoechst Celanese Research Division Hoya Optics, Inc. HTR Sciences Hughes Research Laboratories Huntington Laboratories IBM Corporation IBM Japan, Ltd. Imperial Chemical Industries Innovative Technology, Inc. Instron Corporation Instruments S.A., Inc./Riber Division International Centre for Diffraction Data (JCPDS) International Scientific Instruments, Inc. Ion Tech, Inc. Ionic Atlanta, Inc Iowa Fly Ash James River Corporation Janis Research Company, Inc. JEOL U.S.A., Inc Johnson & Johnson Orthopaedics Kanegafuchi Chemical Industry Co., Ltd. Kluwer Academic Publishers Kobe Development Corporation Kogaku Giken Company, Ltd. Kopin Corporation Kratos Analytical, Inc Lake Shore Cryotronics, Inc. Lam Research Corporation Lambda Physik, Inc Lawrence Livermore National Laboratory Kurt J. Lesker Company Leybold Inficon Inc. Leybold Vacuum Products, Inc. Los Alamos National Laboratory Manics Martin Marietta Energy Systems, Inc. Martin Marietta Laboratories Materials Research Corporation Matheson Gas Products Matsushita Electrical Industrial Co. MDC Vacuum Products Corporation MEMC Electronic Materials Inc. Microelectronics & Computer Technology Corporation (MCC) Microscience, Inc. Mitsui Petrochemical Industries, Ltd. MKS Instruments, Inc. Mobil Research & Development Corporation Molycorp, Inc. (a Unocal Company) Monsanto Company Nano Instruments, Inc. National Electrostatics Corporation National Semiconductor NEC Research Institute Inc. Newport Corporation Nimic, Inc. Nippon Denso Co., Ltd. Nippon Mining Company, Ltd. Nippon Telegraph & Telephone Corporation

NIST North Eastern Analytical Corporation Norton Company Oak Ridge National Laboratory OIS, Inc. (Ovonic Imaging Systems, Inc.) Ortech International Oxford Instruments North America Inc. Pacific Northwest Laboratory Peak Systems, Inc. Perkin-Elmer Pfizer, Inc. Philips Electronic Instruments Company PPG Industries Glass R&D Center PQ Corporation Process Products Corporation The Proctor & Gamble Company Quantum Design Questek, Inc. Raychem Corporation Raytheon Company Rhone-Poulenc Inc. Rockwell International Science Center Sandia National Laboratories Sanyo Electric Co., Ltd. Schlumberger-Doll Research Schott Fiber Optics, Inc. Scienta Instruments AB Siemens Analytical X-Ray Instruments, Inc. Siemens Solar Industries Solar Energy Research Institute (SERI) Solarex Corporation Solecon Laboratories, Inc. South Bay Technology, Inc. Spex Industries, Inc. Spire Corporation Springer-Verlag New York, Inc. Strem Chemicals, Inc. Sumitomo Electric USA, Inc Sumitomo Metal Mining Co., Ltd. Superconductive Components, Inc. Superconductivity Publications, Inc. Surface Science Instruments Tamarack Scientific Co., Inc. Texas Instruments, Inc. Texas instruments, inc 3M Company Toei Industry Co., Ltd. Tonen Corporation Toshiba Corporation Tosoh Corporation Tracor Northern Ultra High Vacuum Instruments Inc. Ultratherm Inc. Union Carbide Chemical & Plastics Co. United Technologies Research Center Universal Energy Systems USG Research Center Vacuum/Atmospheres Company Vacuum Barrier Corporation Varian Assocs., Inc./Extrion Division Varian Assocs., Inc./Continental Electronic Div. Varian Assocs., Inc./Thin Film Technology Div. VG Instruments, Inc. Voltaix, Inc. W.R. Grace & Company Wacker Siltronic Corporation Wavemat Inc Westinghouse Electric Corporation Xerox Corporation Carl Zeiss, Inc.