
Canad. Math. Bull. Vol. 21 (4), 1978 

PROPERTIES OF HEREDITARY HYPERGRAPHS 
A N D MIDDLE GRAPHS 

BY 

E . J. C O C K A Y N E , S. T. H E D E T N I E M I , A N D D . J. M I L L E R 

ABSTRACT. The middle graph of a graph G - ( V, E) is the graph 
M{G) = (VUE, E'), in which two vertices u, v are adjacent if either 
M is a vertex in V and v is an edge in E containing u, or u and v are 
edges in E having a vertex in common. Middle graphs have been 
characterized in terms of line graphs by Hamada and Yoshimura [7], 
who also investigated their traversability and connectivity proper
ties. In this paper another characterization of middle graphs is 
presented, in which they are viewed as a class of intersection 
(representative) graphs of hereditary hypergraphs. Graph theoretic 
parameters associated with the concepts of vertex independence, 
dominance, and irredundance for middle graphs are discussed, and 
equalities relating the chromatic number of a graph to these 
parameters are obtained. 

1. Introduction. The line graph of any graph G = (V,E) is the graph 
L(G) = (E, E'), the vertices of which correspond 1-1 with the edges of G, and 
two vertices are adjacent in L(G) if and only if the corresponding edges in G 
have a vertex in common. Similarly, the middle graph M(G) = (VU JE, E') has 
for its vertex set the union of the vertices and edges of G, and having two 
vertices u and v adjacent if and only if either u is a vertex of G and v an edge 
of G containing u, or u and v are adjacent edges in G. One can obtain the 
middle graph of G by superimposing L(G) on the graph S(G), which is the 
subdivision graph of G, obtained by "inserting" a new vertex on each edge of 
G, cf. Fig. 1. Notice that if u and v are adjacent in G then they are not 
adjacent in M{G), 

2. Characterizations. Middle graphs arise naturally in the study of represen
tative graphs of hereditary hypergraphs. Recall that a hypergraph H=(V,E) 
consists of a set of vertices V together with a set of edges JE, each of which is 
an arbitrary subset of V. A hypergraph is hereditary if ^ e J E and e2^ex 

implies e2e E. The representative graph of a hypergraph H = ( V, E) is the graph 
£l(H) = (E, E'), the vertices of which correspond 1-1 with the edges of H, and 
two vertices are adjacent in (1(H) if and only if the corresponding edges in H 
have a non-empty intersection. Stated in other terms, the representative graph 
Ci(H) is the intersection graph of the family E of subsets of V. Although every 
graph G = (V, JE) is a hypergraph, this hypergraph is not hereditary. A natural 
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hereditary hypergraph associated with G is the hypergraph HH(G) = 
(V,VUE). It is easy to see that the representative graph of HH(G), 
fi(HH(G)), is a middle graph, and conversely. Thus, for any graph G, M(G)^ 
n(HH(G)). 

Hamada and Yoshimura [7], have shown that every middle graph is isomor
phic to a line graph. If a graph G+ is constructed from a graph G by adding to 
each vertex of G an adjacent endvertex, then M(G) — L(G+). This result can 
be used to obtain the following characterization of middle graphs. A clique C 
of a graph G is a maximal complete subgraph of G. A vertex of G is called 
unicliqual if it is an element of only one clique; such a clique will be called a 
unicliqual clique. It is important to observe that a vertex v is unicliqual if and 
only if the subgraph induced by the vertices adjacent to v is complete. The 
following result due to Sampathkumar and Chikkodimath [12] characterize 
middle graphs. 

PROPOSITION 2.1. A graph G is a middle graph if and only if the unicliqual 
cliques Cu C 2 , . . . ,Ck of G satisfy the following conditions: 

(i) |qnq|<si, 
(ii) Cl9 C 2 , . . . , Ck is a partition of E(G), and 

(iii) every non-unicliqual vertex lies in exactly two cliques. 

3. Isomorphisms. The following two remarks are almost immediate conse
quences of the fact that middle graphs form a subclass of the class of all line 
graphs. 

REMARK 3.1. For any graphs Gx and G2, G1 — G2 if and only if M{GX) — 
M(G2). To establish this remark we first note that Gx — G2 if and only if 
GX~G2. By Whitney's Theorem on line graphs [15], GX — G2 if and only if 
L(GÎ)=-L(G2), and since L(Gt)^M(Gt), the remark follows. It should be 
noted that the exceptional cases of Whitney's Theorem involving the graphs 
KU3 and K3 do not occur here. 

The automorphism group of a graph G will be denoted by Aut (G). 
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REMARK 3.2. For any graph G, without isolated vertices, Aut(G) — 
Aut (M(G)). Since G contains no isolated vertices it is easy to establish that 
Aut(G) — Aut(G + ) . Again we note that the exceptional cases of Whitney's 
Theorem involving the graphs KU3 and K3 do not occur here and hence by 
Whitney's Theorem [15] and a theorem of Sabidussi [11, p. 365] we have that 
Aut G - A u t (L(G+)). But L(G+)~M(G) and hence it follows that A u t ( G ) -
Aut (M(G)). 

4. Independence, dominance, and irredundance. Let G be an undirected 
graph with vertex set V. If v e V the closed neighbourhood of v consists of the 
set N[v] = {viU{x | x is adjacent to v}. The concepts of independence, domi
nance and irredundancy of vertex subsets of G may be defined in terms of 
closed neighbourhoods. 

A subset I is independent if no vertex of I lies in the closed neighbourhood 
of any other vertex of I ; a subset D is dominating if the union of the closed 
neighbourhoods of the vertices in D is V, and a subset R is irredundant if for 
each vertex v of R, N[v] is not contained in the union of all other closed 
neighbourhoods N[u], with ueR, u^v. 

The properties of independence sets in graphs are well known. Dominating 
sets have been studied by Ore [10], Berge [1] and in [3, 4, 5]. Since the notion 
of irredundancy is possibly new, it is briefly discussed here. 

In elementary terms, a subset 1? of V(G) is irredundant if the closed 
neighbourhood of each vertex of R adds to U r e R N[r] a vertex, which no other 
vertex of JR contributes. Figure 2 depicts a graph G; the table of which shows 
the closed neighbourhoods of the irredundant set R={3,4,7}. The circled 
vertex in each neighbourhood N[u], is a vertex which is in no other closed 
neighbourhood of vertices of R. 

Note that any independent set is irredundant. A set is independent and 
dominating if and only if it is maximal independent [1, p. 309]. The following is 
an analogous result for irredundancy. The proof is obvious and is omitted. 

PROPOSITION 4.1. A set is irredundant and dominating if and only if it is 
minimal dominating. 

We now define parameters ir(G) (IR(G)), y(G) (T(G)), î(G)(j30(G)) to be 
the smallest (largest) orders of maximal irredundant, minimal dominating and 

u 
3 
4 
7 

N[u] 
3 ® 2 4 
4 3 5 © 
© 5 

Figure 2. 
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maximal independent sets of vertices of G, respectively. In general these 
parameters of a graph are distinct and by virtue of the above satisfy the 
following string of inequalities (proof omitted). 

PROPOSITION 4.2. For any graph G, 

ir(G) < 7 (G) < i(G) < p0(G) < T(G) < IR(G). 

The next results evaluate these parameters for representative graphs of 
hereditary hypergraphs. 

5. Properties of hereditary hypergraphs. If H = (X,E) is a hereditary 
hypergraph without isolated vertices (a vertex in no edge of E), define TT(H) to 
be the smallest order of a partition of X into elements of E. 

THEOREM 5.1. If H is a hereditary hypergraph with p vertices and no isolated 
vertices, then 

ir(Cl(H)) = 7(n(H)) = W(H)) = TT(H) 

and 

IRMH)) = r(fl(H)) = j30(fl(H)) = p. 

We now prove three propositions which will establish Theorem 5.1. 

PROPOSITION 5.2. / / H is a hereditary hypergraph with p vertices and no 
isolated vertices, then i(£l(H)) = TT(H) and /30(ft(H)) = p. 

Proof. Xu...,Xk is a partition of X into edges of H if and only if the 
corresponding set of vertices of Cl(H) is an independent dominating set of 
n(H). 

PROPOSITION 53. If H is a hereditary hypergraph with p vertices and no 
isolated vertices, then IR(Ci(H)) = p. 

Proof. Let Xu ... ,Xk be irredundant vertices of fl(H). Then for each 
je{2, . . . , f c } , X , - U t < j ^ ^ ^ > otherwise N [ ^ J ] ^ U i < J M ^ ] contrary to the 
definition of irredundancy. Therefore | ( J^- -^ I — / f ° r e a ch / = 2,..., k. Hence 
P = IUi*kXi|>fc and I « ( n ( H ) ) < p . 

Conversely the properties of H imply that { 1 } , . . . , {p} is an independent and 
hence irredundant set of vertices of Cl(H) and thus IR(Cl(H))>p. This com
pletes the proof of the proposition. 

PROPOSITION 5.4. If H is a hereditary hypergraph without isolated vertices then 
ir((l(H)) = >7T(H). 
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Proof. By N[S] we shall mean the closed neighborhood in ft(JFJ) of the 
vertex S of Ù(H). Let X l 9 . . . , Xk be the edges of H corresponding to the 
vertices of a maximal irredundant set of vertices of fl(H). To establish that 
Ui^iXt = X, assume the contrary, that is, there exists a n x e X with x£Uik=iXt. 
We show that { X l 5 . . . , Xk9 {x}} is an irredundant set of vertices of O(H), 
contrary to maximality. 

Firstly N[{JC}] contains {x} which is not in U L M - ^ 1 since xjtXt. Suppose 
for some /, 

N [ ^ ) ] S U M A ; ] U N [ { X } ] . (i) 

Then the redundancy of { X l 5 . . . , Xk} implies the existence of a vertex of Cl(H) 
i.e. an edge W of H, such that 

WeN[Xjl WGN[{X}] and W ^ U M ^ ] -

Therefore x e W , W f l ^ < ^ and W f l X ^ ^ O V / ) . Since JC^X, we deduce 
that there exists y e WflX, satisfying y^X^ (i^j) and y^x. Hence 

{yleM^l-fuMxjuMW]) 

contrary to (1). Therefore {JÏ=iXt=X as asserted. Define Y1 = X1 and YJ-= 
A i - U i < / ^ ; ( 7 = 2 , . . . , k ) . 

Then Y,^<£ f° r 7 = 1, . . . , fc . Otherwise, some X ^ U ^ / X i which implies 
N[-X/]^Ui<jM^i] contrary to irredundancy. By construction Yl9..., Yk is a 
partition of X of order k and the hereditary property implies that each Yi is an 
edge of H. Hence ir(n(H))>7r(H). 

Conversely if X l 5 . . . , Xk is a partition of X into edges of H, then the 
corresponding vertices of Q(H) are independent and hence irredundant. Thus 
ir(fl(H)) < ir(H), proving the proposition. 

Theorem 5.1 follows immediately from Propositions 5.2, 5.3, and 5.4. 
Let X be the vertex set of a p vertex graph G and E be the set of all 

independent sets of vertices of G. Then H = (X, E) is a hereditary hypergraph 
whose representative graph is the independence graph 1(G) of G studied in 
[2,13] and TT(H) = X(G), the chromatic number of G. Theorem 5.1 specializes 
to the following corollary, part of which was established in [2]. 

COROLLARY 5.5, For any graph G having p vertices 

HUG)) = y(I(G)) = HUG)) = x(G) 

IR(I(G)) = r(I(G)) = 0oU(G)) = p. 
6 
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The theorem may be specialized to involve other graph theoretic parameters 
in precisely the same way as Theorem 6 of [2] was specialized. 

Define ax{G) as the minimum number of edges necessary to cover all the 
vertices of G. 

THEOREM 5.6. For the hereditary hypergraph HH(G) of any connected graph 
G,7r(HH(G)) = al(G). 

Proof. Let ir = {X1? X 2 , . . . , Xk} be a partition of minimum order of the 
vertices V into edges of HH(G). Let Xu X2,..., Xt be edges of G and 
Xi+1,...,Xk be vertices of G. For each such vertex Xip let Yi} be any edge of 
G incident with Xir Then {Xu X 2 , . . . , Xh Yi+1,..., Yk} is a set of edges of G 
which covers all the vertices of G Therefore, 

k = ir(HH(G))>a1(G). 

Conversely, let {Yl9 Y 2 , . . . , Yk} be a minimum set of edges which contain 
all the vertices of G. Define Xj = Y,- -Ui</X f . Note that no X, = <£>, since this 
would contradict the minimality of {Yu Y2,..., Yk}. Therefore, TT = 
{ X I , X 2 , . . . , Xk} is a partition of the vertices of G into edges of HH(G), and 
7r(ffflr(G))<k = a1(G), completing the proof. 

In the next section we shall use these results on hereditary hypergraphs to 
obtain several parameter values of middle graphs. 

6. Properties of middle graphs. Theorems 5.1 and 5.6 and the observation 
that Cl(HH(G)) — M(G) enable us to determine several parameter values of 
middle graphs. 

THEOREM 6.1. For any connected graph G with p vertices and q edges, 
(i) ir(M(G)) = y(M(G)) = i(M(G)) = a a(G). 

(ii) p0(M(G)) = r(M(G)) = IR(M(G)) = p, and 
(iii) a0(M(G)) = q. 

It can be observed from Theorem 6.1 that for any connected graph G — 
( V, E) the set of vertices V forms a maximum independent set of vertices, i.e. a 
j80-set, in M(G), and similarly the set E forms a minimum edge cover, i.e. an 
a0-set, of M(G). Equality (iii) above follows from (ii) and Gallai's result [6] 
that for any graph G with p vertices, a0(G) + /30(G):=p, and the observation 
that M(G) has p + q vertices. 

The precise determination of jS^MCG)), the maximum number of indepen
dent edges in M(G), can be made when G is a tree or a unicyclic graph. 

THEOREM 6.2. If G is a connected graph of order p with q edges and at most 
one cycle, then ^X{M{G)) = q = a0(M(G)). 
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Proof. Since the maximum number of independent edges of a graph is at 
most half the number of vertices, then (31(M(G))<(p + q)/2<q when p<q 
and ]8i(M(G)) < q when G is a tree or a unicyclic graph, for which p = q + 1 or 
p = q, respectively. In these two cases, one readily shows by induction on q that 
P1(S(G)) = q, where S(G) is the subdivision graph of G. Since S(G)c:M(G), 
then jSxCSCG^/SiCMCG))^*?, and the theorem follows, with the aid of 
Theorem 6.1(iii). 

In [8], Kônig showed that a0(G) = fix(G) holds when G is bipartite. The 
proof of Theorem 6.2 shows that the same equality holds for middle graphs of 
forests and unicyclic graphs, but for no other middle graphs. 

Our last parame eric result concerns the chromatic number x a n d the size co 
of a largest clique in a middle graph. 

THEOREM 6.3. For any graph G having maximum degree d, x(M(G)) = 
co(M(G)) = d + l . 

Proof. According to the theorem of Vizing [14] the chromatic number of the 
line graph L(G) of a graph G satisfies d < x ( L ( G ) ) < d + l . 

Colour, therefore, the vertices of M(G) which correspond to edges of G with 
d + 1 colours. Consider next colouring the vertices of M(G) which correspond 
to vertices of G Since each of these is adjacent in M(G) to at most d vertices, 
each may be assigned one of the d + 1 colours. Thus, ^ (M(G))<d + l . In 
Section 2 we noted that M(G) — L(G^), and since G+ has maximum degree 
d + 1, then co(L(G+)) = d + l, so d + l = <o(M(G))<*(M(G)). 
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