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Abstract

Varietal identification plays a pivotal role in viticulture for several purposes. Nowadays, such
identification is accomplished using ampelography and molecular markers, techniques requir-
ing specific expertise and equipment. Deep learning, on the other hand, appears to be a viable
and cost-effective alternative, as several recent studies claim that computer vision models can
identify different vine varieties with high accuracy. Such works, however, limit their scope to a
handful of selected varieties and do not provide accurate figures for external data validation.
In the current study, five well-known computer vision models were applied to leaf images to
verify whether the results presented in the literature can be replicated over a larger data set
consisting of 27 varieties with 26 382 images. It was built over 2 years of dedicated field
sampling at three geographically distinct sites, and a validation data set was collected from
the Internet. Cross-validation results on the purpose-built data set confirm literature results.
However, the same models, when validated against the independent data set, appear unable to
generalize over the training data and retain the performances measured during cross
validation. These results indicate that further enhancement have been done in filling such a
gap and developing a more reliable model to discriminate among grape varieties, underlining
that, to achieve this purpose, the image resolution appears to be a crucial factor in the
development of such models.

Introduction

Grapevine is one of the most important fruit species and is cultivated in more than 90 coun-
tries (FAOSTAT, 2019). World under vines is estimated at 7.3 million ha (OIV, 2021), and
grape production in 2019 was estimated to be ∼77 million tonnes (FAOSTAT, 2019).
Grapes are used to produce wine, related fermented and distillate products, dried fruit (rai-
sins), juice and fresh fruit (table grapes). Nonetheless, the major grape destination is winemak-
ing (Terral et al., 2010).

The genus Vitis L. encompasses 60-80 species, 20–25 of which originated from North
America, about 60 from Asia and only Vitis vinifera L. from Europe (Galet, 1988; This
et al., 2006; Terral et al., 2010; Keller, 2020; WFO, 2022). This latter, evolved from a dioecious
wild form, V. vinifera subsp. sylvestris (Gmelin) Hegi (Garcia and Revilla, 2013) has been
domesticated between 6000 and 4000 years BC (Zohary, 1995; Arroyo-García et al., 2006;
Pagnoux et al., 2021) and is of greater economic importance. The other species have been
used only for breeding activities to obtain mainly rootstocks and fungus-resistant hybrids
(This et al., 2004).

The number of cultivated grapevine varieties is estimated to be ∼6000 (Lacombe, 2012) and
this number is being increasing due to breeding activities. The most cultivated varieties world-
wide are about 400 (Galet, 2000), and a great number of vine genetic resources are mainly
maintained inside germplasm repositories as a source of genetic variability. Although there
are ∼25 000 prime names registered in the Vitis International Variety Catalogue (Maul and
Töpfer, 2015) of which 13 500 are referred to V. vinifera L., there are many synonyms, homo-
nyms and incorrect or unknown denominations in grapevine biodiversity.

Thus, the characterization and identification of varieties are of great importance, not only
for taxonomic purposes, but also for rational management and use of collections, breeding
tasks, compliance with national and international guidelines and obtaining plant breeder
rights within the UPOV (International Union for the Protection of New Varieties of Plants)
system (UPOV, 1991). In this scope, many methods have been proposed until now, but the
most effective are based on morphological traits of vines (ampelography, phyllometry) and
genetic analyses. Besides them, other approaches have been suggested in the last few decades,
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such as chemotaxonomic (metabolomic profile of grape aromas)
and phenol characteristics (Roggero et al., 1988; Mattivi et al.,
1990; Preiner et al., 2017).

Among genetic analyses, microsatellite markers are the most
effective and widely used for grapevine variety identification pur-
poses, due to their great number, high polymorphism and codo-
minant expression (Thomas et al., 1994; Lin and Walker, 1998;
Boursiquot and This, 1999; Sefc et al., 2001; This et al., 2004;
Sefc et al., 2009). Despite this technique is lab dependent, the
results can be acquired quickly, and the analysis could be per-
formed on vegetative or woody organ samples (Migliaro et al.,
2012). Anyway, it is not generally effective in detecting intravarie-
tal variability, i.e. clones or biotypes, even though in recent times
some microsatellite markers, specific for somatic mutants of the
berry colour, have been discovered (Migliaro et al., 2017).

Ampelography, the description and classification of grapevines
(This et al., 2006), was the first method used earlier. Even though
it has been used profitably for many years, it is not suitable for
describing juvenile forms (due to their different traits compared
to adult plants), and difficulties may occur in varieties with a
very similar phenotype. The expression of some characteristics
could also be affected by the environment and thus compromise
the analyses. Aiming to reduce the subjectivity of the observations
and avoid inaccurate comparisons, the descriptors have been stan-
dardized at the international level (OIV, 1983, 2009). Despite that,
it remains a technique that requires good training and a lot of
experience, and therefore is restricted to a small number of
ampelographers.

Several methods have been developed to overcome the subject-
ivity of morphological observations, by using biometric measures.
These approaches typically consider leaves because of their par-
ticular and distinctive patterns, which are commonly referred to
in taxonomical classifications. Characteristic traits such as
shape, colour and distances among landmark points can be deter-
mined with a broad set of techniques. In viticulture, the first stud-
ies based on biometric measures of leaves began during the 19th
century and later improved during the last century (Goethe, 1887;
Ravaz, 1902; Rodrigues, 1952; Galet, 1976; Chitwood, 2021) tak-
ing into consideration particular distances, angles and the ratio
of a fixed set of leaf landmarks. Compared to ampelography, a
biometric method avoids subjectivity of the observations, and is
adequate for computational input (Costacurta et al., 1992;
Alessandri et al., 1996; Soldavini et al., 2007; Zhang et al., 2010;
Bodor et al., 2012) and statistical analyses can be carried out.
Different biometric approaches to data analysis have been pro-
posed such as multivariate statistical, morphometric or neural
network analyses, but in general performed on a small number
of varieties and seldom with uncertainty results, especially when
the number of varieties is high (Boursiquot et al., 1987;
Costacurta et al., 1998, 2003; Mancuso, 2001; Mancuso et al.,
2002; Bodor et al., 2017; Klein et al., 2017; Pereira et al., 2017;
Kupe et al., 2021). However, the above grapevine identification
techniques are time-consuming and require adequate equipment
and specialists with a lot of expertise.

To overcome these difficulties artificial intelligence methods,
based on convolutional neural networks (CNNs), have been
developed. Such models learn in a supervised way a set of filters
that allows them to extract from the input image a set of relevant
features for the purpose of image classification. CNNs are the de
facto standard for image classification tasks in artificial intelli-
gence, several deep learning frameworks, like Keras and Torch,
allow us to implement them with moderate coding effort, and

such models have proven their validity in a broad range of
usage scenarios including human, animal and plant classifications
(Seng et al., 2018; Chai et al., 2021). CNNs have recently been
proposed for grapevine identification in studies on leaf or
bunch samples of different varieties (Pereira et al., 2019;
Škrabánek et al., 2020; Liu et al., 2021; Nasiri et al., 2021; Yang
and Xu, 2021; Koklu et al., 2022) with promising results. These
studies, however, present some limitations in the form of oversim-
plified data sets, or lack of external validation to assess the robust-
ness of the trained models. Nasiri et al. (2021), for instance,
consider only six varieties, while Liu et al. (2021) do not validate
their model against external data. Moreover, because of the high
accuracy values scored by their considered models, these authors
limit the scope of their work to now-classical convolutional mod-
els like VGG-16 (Simonyan and Zisserman, 2015) or GoogLeNet
(Szegedy et al., 2015) without investigating different solutions or
more recent iterations of these models.

The current study attempts to address the above-mentioned
research limitations, i.e. little variability examined and absence
of external validation, by applying a set of well-known modern
computer vision models to a large field image data set to demon-
strate their applicability to a production scenario, as well as to an
external, public domain data set to evaluate their ability to gener-
alize across different sampling procedures and techniques.

Materials and methods

Leaf data set construction

The leaf images of 27 grapevine varieties of true identity have
been taken in diverse vineyards located in three different environ-
ments (northern, central and southern Italy), in the summers of
2020 and 2021. The resulting data set consists of 26 382 images,
with an unbalanced number of samples for each variety (Fig. 1).
All images were taken during the period from the flowering to
the maturity of the berries, both in field, directly on the canopy
and in lab on detached leaves, using a solid background white
colour.

Only the upper side of one whole leaf was captured in each
photo and leaves with some evident deformations, i.e. disease
symptoms or any other growth malformation, were not consid-
ered. The sample included only adult leaves, growing in the mid-
dle portion of the shoots, during the berry set and the veraison
period, the most effective for the leaf characterization according
to the OIV methodology (OIV, 2009). Thus, too young or too
old leaves, attached on the upper or lower shoot side respectively,
were excluded from the trial.

The resolution of the images ranged from a minimum of
1920 × 1280 pixels (mobile phone) to a maximum of 5184 ×
3456 pixels (camera), thus including in the training set a number
of different sensors to allow the model to abstract over the appar-
atus used to produce the images.

External testing data set

To measure the model’s performance on radically different data
from the samples generated by our data collection procedure,
the Grapevine Leaves data set by Vlah (2021) was considered.
This data set is hosted on the Kaggle platform and made available
to the public under CC BY-NC-SA 4.0 license; it consists in over
1000 images of grapevine adult leaves, with a resolution of 1536 ×
2048 pixels, taken in a German vineyard, located in Geisenheim,
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in August 2020 using an Apple iPhone 7 camera. This data set
shares 8 of the 11 grapevine varieties with our own: Cabernet
franc, Cabernet-Sauvignon, Chardonnay, Merlot, Pinot noir,
Riesling weiss, Sauvignon blanc and Syrah. This data set was
acquired in different years and different geographical areas,
under diverse environmental conditions that may influence the
expression of leaf ampelographic characteristics (OIV, 2009;
Chitwood et al., 2016); moreover, Vlah’s leaf image collection
was made by a different camera, taking the images only in field.
Therefore, these elements provide sufficient data diversity with
our training data that can be considered a useful external data
sample, suitable to test model’s robustness.

Image classification models and training

Five well-established CNN models were considered for the experi-
ment: ResNet 50 (He et al., 2016), MobileNet V2 (Sandler et al.,
2018), Inception Net V3 (Szegedy et al., 2016), Inception ResNet
V2 (Szegedy et al., 2017) and EfficientNet (Tan and Le, 2019) in
its variants B0, B3 and B5. Although none of these models is to be
considered state-of-the-art in the field of image classification
(Wortsman et al., 2022), they all provide reasonably good overall
performance and they have widely available implementations in a
number of deep learning packages such as TensorFlow, Keras and

PyTorch. Each of the models studied is very complex, with mil-
lions of parameters to be learned during training. For example,
the smallest model considered here, MobileNet V2, has ∼3.4 mil-
lion trainable parameters. Hence it is of vital importance to opti-
mize the training procedure to achieve good results in acceptable
times. A stratified cross-validation procedure (Zeng and Martinez,
2000) was used to randomly partition the original data set into ten
equal-sized subsets, called folds, each one respecting the original
data set’s class proportions: i.e. the most represented class
remained the most represented class across all the ten partitions,
and the other classes were represented proportionally. Once folds
were computed, an iterative process began and at each iteration
the partitions, built in the previous step, were grouped into
three larger partitions: the training set, validation set and test
set, which are referred to as splits. The training set was made of
eight folds of the data, and the other two splits of a single fold
each. Each one of the splits, being either a fold or the union of
eight folds, respected the class proportions of the original data
set. Of the three splits, the training set was used to feed the
model during training, the validation set was used to check
model progress during training and finally the test set was used
to perform model evaluation. At each iteration, a new model
instance was trained over the training set and evaluated on the
test set, producing a set of class predictions for each image in

Figure 1. Class cardinality proportions within the data set.
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the latter split. The procedure was repeated many times until each
fold was used once as a test set, which means that every image in
the data set received a class prediction by a model that was not fed
with it during its training. Such predictions were used to evaluate
the model performance metrics over the whole data set.

The stochastic gradient descent (Bottou, 2010) training pro-
cedure was used for all models, with triangular learning rate
scheduling (Smith, 2017). This is an iterative procedure also
and it requires the training data to be processed multiple times,
each one called an epoch. Due to its iterative nature, the training
procedure could, theoretically, go on forever and it is up to the
data scientist to stop it when an appropriate fit is achieved.
Since it is impossible to know a priori the optimal number of
training epochs, they were determined empirically by introducing
the validation set. The training procedure was stopped when the
performance measured on the validation set achieved a maximum
and no further progress could be observed. Such a maximum
point can be considered as the best fit, since it reasonably provides
a sweet spot between underfitting and overfitting. Since the valid-
ation set was used to tune the number of training epochs, its data
were, as a matter of fact, embedded in the trained model, even
though it was not actually processed at training time, hence the
need for a third split to perform an unbiased evaluation.

All models were trained for a maximum of 20 epochs with
online data augmentation, which means generating multiple ver-
sions of the same image as it is passed to the model during the
training. This solution, with respect to a pre-computed set of per-
turbed images, highlighted two advantages: it is more memory
efficient (fewer images to be loaded in the GPU memory) and
introduces a higher degree of randomization over different
epochs, allowing the model to achieve a higher tolerance towards
sub-optimal images. The training images were augmented using
random rotations, vertical flips, horizontal flips and brightness
adjustments to increase variability in the training data, with replica-
tion padding to avoid disrupting the original pixel colour distribu-
tions. The various transformations were applied stochastically in
cascade, meaning that a wing image could be, for instance, both
flipped and rotated, to maximize the randomness of transformations
and, hopefully, the model robustness against noisy data.

Analysis

Three well-known classification metrics (Powers, 2011) were used
to assess the model performance:

(1) Accuracy, which in binary classification is defined as the num-
ber of true positives over the total number of considered predic-
tions and can therefore be extended to the multiclass scenario
by defining it as the fraction of correctly classified samples:

Accuracy = |correct predictions|
| predictions| (1)

It is used to evaluate the overall model performance regardless of
how errors are distributed among different classes and which type
they belong to. Since neural networks evaluate a probability for
each class, it is a frequent practice, in a multiclass setting like
ours, to consider the scores produced by the model as a ranking.
In this case, the prediction is considered correct if the ground
truth class is among the first n classes of the ranking, that is,
classes with the highest probability scores. When used in this
fashion, Accuracy is commonly referred to as Accuracy@n

where n is the number of labels to be considered part of the pre-
diction; in this work Accuracy@3 and Accuracy@5 were used, as it
is a common practice in image classification benchmarks
(Krizhevsky et al., 2012).

(2) Precision, also known as positive-predictive value, is the frac-
tion of positive values that are true positives. It is used to
evaluate the model performance with respect to a given
class. It represents a measure of how good the model is at
avoiding false positives.

(3) Recall, also known as specificity, is the fraction of positive sam-
ples correctly identified by the system. It represents a measure
of how good the model is at avoiding false negatives, and,
like Precision, it is used to evaluate the class-wise performance.

Precision and Recall, being complementary to each other, are
frequently accompanied by their harmonic mean called F1
score, which can be evaluated as follows:

F1 = TP
TP + 1

2(FP + FN)
(2)

where TP is the number of true positives, and FP and FN, respect-
ively, are the number of false positives and false negatives.

F1 score ranges from 0 to 1 and a higher score indicates better
overall prediction quality; moreover, being a harmonic mean, it is
a lower value than the algebraic mean and it dramatically drops
when one of the two values gets close to zero. Therefore, to
have a high F1 value both Precision and Recall must be close to
1; in other words, having one of the two scores close to 1 is not
enough to achieve a high or even average value if the other metric
indicates a poor performance.

In addition, confusion matrices were used to visualize the over-
all classification quality for each model. A confusion matrix is a
square matrix where each row contains the instances of a given
class, i.e. the variety samples, and each column reports the variety
name predicted by the model. Correct classifications appear on
the diagonal of such a matrix. Misclassifications (situations in
which the model does not match the correct class) are, instead,
scattered in the remainder of the matrix (Figs 2 and 3).

Results

Cross-validation results

The cross validation was performed as described in Materials and
methods section for all models on the complete set of in-house col-
lected data. Accuracy results for all the considered models are
shown in Table 1. Values were calculated for each test split consid-
ered in the cross-validation procedure and then averaged. The
Inception ResNet and Inception Net architectures appeared to per-
form better than the others, with the EfficientNet models placing
between ResNet and MobileNet.

Due to our experimental design, our cross-validation proced-
ure was built on pre-computed stratified partitions of the data
set. Hence, each image was present in the test partition of the
data exactly once, making a union of the test split predictions
and evaluating global metrics over the ten replicas of all models
considered. By performing this aggregation some distributional
information was lost. However, as shown in Table 1, the
Accuracy standard deviation among different folds was <0.01
for MobileNet and Inception Net, while slightly above 0.01 for
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Inception ResNet and the EfficientNet models, implying that all
models, except for ResNet 50, achieved homogeneous perform-
ance over different folds. By merging the fold evaluation results,
a confusion matrix was computed, and class-specific metrics eval-
uated, namely Precision, Recall, and F-score, for each model on
relevant-sized samples.

For all models, confusion matrices are very diagonal, with no
more than 9% of the samples residing outside the diagonal. This is
particularly evident for the best performing models, like Inception
Net, whose confusion matrix is shown in Fig. 2. The errors made
by such a model are very few and episodic, with the notable
exception of recurrent misclassifications between the Merlot and
Vermentino varieties, although in very low numbers, more pre-
cisely 16 samples, of which 13 were Vermentino samples labelled
as Merlot and three vice versa.

When considering models with lower accuracy, classification
errors become less episodic, and some error patterns emerge.
For instance, in the EfficientNet B5 confusion matrix shown in
Fig. 3, the confusion between Vermentino and Merlot is more evi-
dent, but also other confusion clusters emerge, such as Canaiolo
nero-Trebbiano toscano, Trebbiano toscano-Merlot, Trebbiano
toscano-Vermentino and the one among the three Pinot cultivars.
It can be easily observed how most errors occur over instances of
the Canaiolo nero, Merlot, Sangiovese, Trebbiano toscano and
Vermentino varieties. However, these classes, except for
Trebbiano toscano, have a high cardinality, in fact they are,
along with Cabernet-Sauvignon, the largest classes in the data.
Cabernet-Sauvignon, despite being a numerous class, shows con-
sistently good classification accuracy across all models, implying
that its distinctive leaf features are easily learned by all models.

Figure 2. Inception Net V3 confusion matrix on the cross-validated data.
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To better illustrate error distribution, for each model, Precision
and Recall were considered for each class, and plot their values as
shown in Fig. 4 where the measured values for the models ResNet
50, EfficientNet B5 and Inception Net V3 are displayed. Classes in
the top right corner of each chart are predicted with little or no
errors, while moving to the left side Precision decreases, and mov-
ing to the bottom Recall decreases. It can be easily noticed how
ResNet, the worst scoring model, has no classes in the chart’s
upper left corner, but rather a distribution that forms a sort of cir-
cle around said point, implying that there are classes with remark-
ably high Precision score and classes with very high Recall, but
not both. On the other hand, EfficientNet B5 achieves overall bet-
ter scores, resulting in several classes converging towards the
upper right corner of the chart with few problematic ones, espe-
cially Trebbiano toscano, remaining quite far from it. Finally,

Figure 3. EfficientNet B5 confusion matrix on the cross-validated data.

Table 1. Mean and standard deviation of the accuracy, the number of true
positives over the total number of considered predictions, for the cross validation

Model Average Accuracy
Standard deviation

of Accuracy

Inception Net V3 0.997 0.002

Inception ResNet V2 0.993 0.011

MobileNet V2 0.976 0.004

EfficientNet B5 0.961 0.012

EfficientNet B3 0.948 0.010

EfficientNet B0 0.924 0.016

ResNet 50 0.913 0.222
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Inception Net V3, the best scoring model, has all classes firmly
placed in the upper right corner of the Precision–Recall chart.

To further illustrate differences in class performances, the F1
score was considered, i.e. the harmonic mean of Precision and
Recall. All evaluated F1 scores are presented in Table 2, which
provides further evidence of how errors are not evenly distributed
among the considered classes. Furthermore, it explains as such
differences appear to be systematic, as varieties like Cabernet-
Sauvignon, Marzemino and Uva di Troia achieve a F1 score
greater than 0.94 for all models, while varieties like Glera,
Trebbiano toscano, Vermentino and Merlot appear to be consist-
ently more difficult to correctly classify. These results underline
that all models fitted the training data reasonably well and
some varieties are consistently harder to classify than others, as

some cultivars are notoriously very similar to each other and
thus not easy to identify by ampelographers.

Convolutional features’ analysis

To gather further insights on the training process outcome, it is
possible to map how varieties are distributed in the learned fea-
ture space. Leveraging the models’ layered architecture it is pos-
sible to ignore, for all models, the last layer, i.e. the one
effectively implementing classification, and consider the features
extracted by the convolutional layers as vectors representing the
visual information in the image. Since these features typically
come in thousands, to reduce the multidimensionality of data
into a lower dimensional space a principal component analysis

Figure 4. Positioning of classes with respect to measured Precision and Recall.
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has been performed aiming to find out patterns and relationships
between the grapevine varieties more effectively, in an intelligible
overview of our data. The feature space learned by the Inception
Net V3 model projected into three dimensions is shown in Fig. 5.
Ideally, visually similar varieties should occupy the same region of
such a space or at least sit close to each other, and the more the
point clouds representing two distinct varieties are distant, the
easier it is for the model to discriminate between these two var-
ieties. The varieties Uva di Troia, Cabernet-Sauvignon, and, to a
lesser extent, Carmenère spread out across the three principal
components implying that they span a wide variety of features
and some of their individuals are starkly different from the rest
of the data, hence very well recognizable. Other varieties, like

Pinot or Muscat, instead form a very dense point clouds occupy-
ing a considerably smaller share of space, implying that the pro-
vided data for these varieties is more self-consistent. It is also
evident that there is significant overlap between several classes,
and even though only a three-dimensional projection is visible
of a much higher dimensional space, it is nevertheless a hint of
the fact that the lines between certain varieties are blurry, and
the model may confound them.

External data set validation

Finally, all considered models were trained on the full data set
described in the ‘Cross-validation results’ section and tested

Figure 4. Continued.
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with Vlah’s external data set. The Accuracy@1, Accuracy@3 and
Accuracy@5 results are shown in Table 3. The performance differ-
ence between cross validation and this new evaluation is evident
and it appears clear that no model can offer satisfactory perform-
ance over this data set when considering only the single most
probable class. However, when considering the three most prob-
able classes, the Accuracy score improves significantly (up to
0.75) and it is further improved by considering the five most
probable classes (up to 0.83).

These numbers suggest that some models, EfficientNet B5 in
particular, managed to learn robust features that allowed them
to recognize characteristic traits and features that are invariant
across different data sets. Other models, on the other hand, like
EfficientNet B0, learned features that are way too specific with
respect to the training data and do not allow them to generalize
over differently sampled data.

Discussion

The main goal of this research is to create a tool that can identify a
grapevine variety only with one or few leaf images acquired in

vineyard by the user, not requiring in this way specific expertise
and equipment. This is a hard goal, due to the variability of the
leaf morphological traits that is affected also by the cultivation
environment. To reduce this variability, only adult leaves grown
in the middle part of the shoot, during the period from the flow-
ering to the berry maturity, were considered, which have very
similar characteristics and many parameters that can be effective
in discriminating the cultivars. Although, some varieties may have
adult leaves that could differ in shape, as illustrated in Fig. 6, the
nets were fed with all the acquired leaves.

In the current study, cross-validation results confirm the find-
ings of many authors (Pereira et al., 2019; Škrabánek et al., 2020;
Liu et al., 2021; Nasiri et al., 2021; Yang and Xu 2021), suggesting
that well-established computer vision models can fit extremely
well a data set of grape leaves. Images not previously used by
the model during the training phase but acquired through the
same process that generated the training set can be classified
with high accuracy. This is especially interesting for cultivars
that have a very similar morphological aspect and are difficult
to distinguish also for ampelographers. That is, for example, the
group of Pinot cultivars. Pinot blanc and Pinot gris, studied in

Table 2. Measure of the overall prediction quality (F1 scores) of considered varieties achieved by the models

Variety EfficientNet B0 EfficientNet B3 EfficientNet B5 Inception ResNet V2 Inception Net V3 MobileNet V2 ResNet 50

Aglianico 0.97 0.96 0.97 0.99 1.00 1.00 0.93

Aleatico 0.92 0.95 0.96 1.00 1.00 0.98 0.94

Bombino bianco 0.96 0.95 0.98 1.00 1.00 0.98 0.87

Cabernet-Sauvignon 0.95 0.98 0.98 1.00 1.00 0.98 0.94

Cabernet franc 0.90 0.95 0.96 1.00 1.00 0.95 0.85

Canaiolo nero 0.92 0.94 0.94 0.99 1.00 0.97 0.90

Carmenère 0.95 0.98 0.98 1.00 1.00 0.97 0.92

Chardonnay 0.96 0.97 0.98 1.00 1.00 0.99 0.89

Cot 0.94 0.95 0.99 1.00 1.00 0.99 0.93

Glera 0.86 0.93 0.98 1.00 1.00 0.99 0.91

Manzoni bianco 0.98 0.99 0.99 1.00 1.00 0.99 0.92

Marzemino 0.98 0.98 0.99 1.00 1.00 0.99 0.96

Merlot 0.86 0.91 0.95 0.99 0.99 0.95 0.90

Muscat à petits grains blancs 0.80 0.90 0.93 1.00 0.99 0.98 0.87

Uva di Troia 0.96 0.97 0.98 0.96 1.00 0.99 0.95

Pinot blanc 0.96 0.98 0.98 1.00 1.00 1.00 0.94

Pinot gris 0.90 0.94 0.95 1.00 1.00 0.98 0.91

Pinot noir 0.93 0.94 0.95 1.00 1.00 0.98 0.93

Refosco dal peduncolo rosso 0.92 0.97 0.98 1.00 1.00 0.98 0.74

Riesling weiss 0.98 0.99 0.99 1.00 1.00 0.99 0.94

Rondinella 0.98 0.97 0.99 1.00 1.00 0.99 0.91

Sangiovese 0.93 0.94 0.95 0.99 1.00 0.98 0.90

Sauvignon blanc 0.98 0.99 0.99 1.00 1.00 1.00 0.94

Syrah 0.87 0.92 0.93 0.93 1.00 0.97 0.91

Trebbiano toscano 0.79 0.85 0.89 0.99 0.99 0.92 0.90

Verduzzo trevigiano 0.96 0.98 0.99 1.00 1.00 0.98 0.93

Vermentino 0.87 0.91 0.92 0.99 0.99 0.95 0.89
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Figure 5. Vector space learned by the Inception Net V3 model.

Table 3. Model Accuracy scores including the external Kaggle data set

Model Input size Trainable parameters Accuracy@1 Accuracy@3 Accuracy@5

MobileNet V2 224 × 224 3.4M 0.29 0.49 0.61

EfficientNet B0 224 × 224 11M 0.19 0.34 0.40

ResNet 50 224 × 224 23M 0.28 0.47 0.55

Inception Net V3 299 × 299 24M 0.32 0.53 0.63

Inception ResNet V2 299 × 299 56M 0.28 0.46 0.56

EfficientNet B3 300 × 300 12M 0.32 0.53 0.68

EfficientNet B5 456 × 456 30M 0.35 0.75 0.83
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this topic, are cultivars generated by a bud mutation of Pinot noir,
and maintained by means of vegetative propagation (Vezzulli
et al., 2012; Pelsy et al., 2015). The main different characteristic
is the colour of the berries, instead the leaves are highly similar.
Nevertheless, the Inception Net V3 model is able to distinguish
between the three varieties and only three misclassifications
occurred (Fig. 2). Instead, with the worse classifying net
(EfficientNet B5) more than 50 misclassifications have been
done (Fig. 3). These observations are however too episodical to

draw strong hypothesis on why one architecture outperforms
another. On the other hand, given a collection of vine leaf images,
what is clear is how any of the considered models can achieve over
0.9 Accuracy in a cross-validation scenario. These results are pos-
sible because cross validation guarantees us that training, valid-
ation and test data are truly homogeneous, as the data
generated by the experimental sampling procedure were split
into non-overlapping sets to perform evaluations. In fact, when
splitting data with cross validation, leaf images in the test portion

Figure 6. Two samples of Trebbiano toscano (a), Pinot
noir (b), and Sangiovese with remarkably different visual
features.
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of the data are not only taken with the same devices used to
acquire training data, but also are taken under the same light con-
ditions, over the same time span and, more importantly, they
come from the same vineyards, which implies that test leaves
have undergone the same environmental conditions that at least
a fraction of their training counterparts had. However, due to
the overwhelming range of environmental conditions a plant
can be exposed to, achieving such a high level of homogeneity
between training data and unknown data is improbable, and
therefore it should be considered as a bias. Our experiments on
an external data set, generated by a different process applied at
a different time in a different geographical zone, show a drastic
decrease in the model performance, implying that the considered
models are not able to generalize over training data enough to
replicate cross-validation performances because of such a bias.

The evaluation presented in Table 3 suggests that the number
of trainable parameters is not directly proportional to the model’s
robustness, implying that the performance decrease is not due to
underfitting, but rather overfitting with the training data. Usually,
in CNNs, a larger model size implies a higher degree of abstrac-
tion, i.e. the inference of higher level aggregated features, possibly
image-wide, like, for instance, the overall leaf shape, or relational
features, including the distance between certain shapes. This is
because more trainable parameters generally imply more filters
and more pooling layers which allow the model to process more
the input image before feeding the feature vector to the final layer
of classification. Our results apparently imply how this kind of
abstraction can indeed provide us with better results in a cross-
validation scenario, but it does not infer features which provide
our model with robustness over environmental conditions.

On the other hand, models that consider larger input images
appear to be more robust, which allow us to hypothesize that,
from a machine learning perspective, small local visual features,
such as leaf margin shapes and patterns, are more robust vine var-
iety predictors than broad, high-level features like the overall
shape or vein topology.

To overcome the criticality highlighted in the current research,
future works will explore (a) new models with larger input layers,
(b) how to overcome the classical leaf image classification
approach presented in this paper by experimenting new training
methods, such as Triplet Loss (Dong and Shen, 2018; Ge, 2018)
which allow us to build different feature spaces and (c) hybrid
model architectures that include, in addition, grapes and shoot
images, and other information such as day of the year, geograph-
ical coordinates or weather variables to be used as predictors or to
implement a posteriori heuristics. Moreover, considering the
recent innovations and developments in autonomous robotic sys-
tems in viticulture (Moreno and Andújar, 2023; Rançon et al.,
2023) it is foreseeable that leaf images of a large number of var-
ieties could be taken in a short time. This would make it possible
to analyse a significant number of cultivated varieties and to
improve and generalize the results of the proposed approach.

Conclusions

The results of the current analysis confirm the claim that these
computer vision models can fit a large data set of grape leaves
extremely well and are able to correctly classify cultivars when
images are acquired under strictly controlled similar conditions.
They also suggest that the performances of the same models wor-
sen significantly when applied to an external data set gathered
under different environmental conditions and using different

devices. Moreover, the results suggest that current image classifi-
cation models do not cope well with the intrinsically high vari-
ability of environmental conditions that can be found in a field
scenario, as even an expert curated data set with several thousand
samples apparently does not guarantee a satisfactory model
robustness for practical field usage. The conducted evaluation
highlighted that model size, i.e. the number of trainable para-
meters, is not a proxy for model robustness, on the other hand
input size appears a driving factor towards achieving a higher
robustness, thus image resolution appears to be a crucial factor
in developing new models for this task. These observations sug-
gest how fine leaf features carry significant information with
respect to the classification task which may get lost when images
are downsampled to the most common input layer sizes like 224
square pixels.

A further criticality lies in the distribution of cultivars accord-
ing to their visual features presented in the ‘Discussion’ section
which suggests how models tend to learn a feature space in
which some cultivars are highly adjacent if not overlapping.
While this is cognitively sound as it reflects the visual similarity
between these varieties, it also hinders model robustness, as the
decision boundaries among them are prone to overfitting and
may rely on spurious, non-relevant features. These two insights
suggest how the considered classes, i.e. different cultivars, cannot
be considered as equidistant or somehow even spaced in terms of
visual similarity and how the distinction between said classes may
lie in fine features which are easily lost with image pre-processing
and downscaling.
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