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Abstract

In this paper we consider a compound Poisson risk model where the insurer earns
credit interest at a constant rate if the surplus is positive and pays out debit interest
at another constant rate if the surplus is negative. Absolute ruin occurs at the moment
when the surplus first drops below a critical value (a negative constant). We study the
asymptotic properties of the absolute ruin probability of this model. First we investigate
the asymptotic behavior of the absolute ruin probability when the claim size distribution
is light tailed. Then we study the case where the common distribution of claim sizes are
heavy tailed.
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1. Introduction

We assume that the insurance company can invest its (positive) capital and earn interest with a
constant force and that the company is still allowed to run its business when its surplus is negative
but greater than the critical level by paying debit interest. The ruin defined accordingly is called
the absolute ruin. Motivated by Cai (2007), we study the asymptotic behavior of the absolute
ruin probabilities for both heavy-tailed and light-tailed claim size distributions. Our model
can serve as a generalization of those ordinary ruin probabilities for risk models with constant
interest force. Many of the results concerning the asymptotic properties of ruin probabilities
are obtained under the constraint that the premium received per unit of time is greater than the
average amount of claim per unit of time, which is called the positive safety loading condition
in the case without investment. In this paper, however, we obtain results about the asymptotic
behavior of the absolute ruin probabilities without such restriction.

Consider the continuous-time risk model, where claims arrive according to a homogeneous
Poisson process with intensity rate λ and premiums are collected continuously at a constant
rate p. The amount of each claim is independent of each other and is also independent of the
claim number process. Moreover, the insurance company earns credit interest with a constant
force r (r > 0) when the surplus is positive and pays debit interest with a constant force of
α when the surplus is negative. Let Si denote the arrival epoch of the ith claim and Ui its
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The compound Poisson risk model 819

claim size. Then N(t) = �{i : Si ≤ t} denotes the number of claims occurring before and on
time t and it is a Poisson process with intensity rate λ. The sequence {Ui} is identically and
independently distributed with distribution function F(·) and it is independent ofN(t). We use
µF to denote the expectation of the distribution F and introduce the quantity ρ = λµF , the
expected claim amount per unit time. When the surplus drops below 0, the insurer could borrow
money with the amount equal to the deficit at a debit interest force α > 0. It is reasonable to
assume that r ≤ α. In the mean time, the insurer will repay the debts and the debt interest
continuously. This leads to the following risk reserve process {R(t)} with dynamics

dR(t) = (p + rR(t) 1{R(t) ≥ 0} + αR(t) 1{R(t) < 0}) dt − dS(t), (1.1)

where S(t) = ∑N(t)
i=1 Ui is the aggregate claim up to time t and 1{·} is the indicator function.

Note from the above dynamics that the premium income will no longer be able to cover the
debits when the surplus is less than −p/α. That is, the surplus process will not be able to return
to a positive amount whenever the process hits −p/α or any level below that. We call −p/α
the critical value and, therefore, we define the time to absolute ruin as

T = inf

{
t ≥ 0 : R(t) ≤ −p

α

}
.

We call this time the time of absolute ruin in the sense that the surplus will no longer be able to
return to a positive level.

Suppose that (�,F ,P) is a probability space that carries all the subjects. Let {Ft } be the
natural filtration generated by {R(t)}. It can be seen that {R(t), t} is a Markov process and that
T is a stopping time. Let Px(·) = P(· | R(0) = x). Define the absolute ruin probability by

ψ(u) = Pu(T < ∞),

and define the nonruin probability by

ψ(u) = Pu(T = ∞).

Since, when the initial reserve is −p/α, absolute ruin occurs immediately, we have

ψ

(
−p
α

)
= 1.

Absolute ruin was first considered in Gerber (1971), (1979). Embrechts and Schmidli (1994)
considered a general insurance risk model and used the piecewise-deterministic Markov process
approach and the martingale methodology to study the absolute ruin probability. Dickson and
dos Reis (1997) studied the absolute ruin problem for a compound Poisson model. They used
simulation to estimate the probability of absolute ruin and to investigate the effect of interest
on the time to recovery to surplus level 0, the number of claims that occurred when the surplus
was below 0, and the maximum absolute value of the surplus process when it was below 0.
A risk model where the surplus process is modeled by a Brownian motion in the presence
of investment and dividend payments according to a barrier strategy was included in Cai et
al. (2006). Explicit expressions for the expectation of the discounted dividends are derived
there. Cai (2007) studied the absolute ruin problem of the compound Poisson surplus process
with only debit interest. Cai concluded that the absolute ruin probability is asymptotically in
proportion to the classical ruin probability as the initial reserve goes to ∞. More generally,
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Gerber and Yang (2007) considered the compound Poisson risk model perturbed by diffusion
with investment. They derived an integro-differential equation satisfied by the absolute ruin
probability regarded as a function of the initial reserve and obtained closed-form solutions when
there was only risk-free investment and the claim size distribution was exponential. Explicit
expressions for the absolute ruin probability were also provided for the classical compound
Poisson model with a constant interest rate.

For the asymptotic behavior of the absolute ruin probability, the presence of credit interest and
debit interest complicates the problem. Explicit expressions for the absolute ruin probabilities
have only been given in the case of an exponential claim size distribution. We are interested
in estimating the absolute ruin probability for a given initial reserve u, in particular, when u is
large. The paper is organized as follows. In Section 2 we assume that the claim size distribution
is heavy tailed, or more specifically, the equilibrium function of the claim size distribution
is subexponential, and we show that the absolute ruin probability is also subexponentially
decreasing for a large initial capital u. In Section 3 we consider the case where the claim size
distribution has a light tail and we prove that the absolute ruin probability is exponentially
decreasing.

2. Equations for the probability of survival

In the subsequent sections we always assume that the distribution function F(x) is contin-
uous. For convenience, we introduce the functions

ψ+(u) =
{
ψ(u) for u ≥ 0,

0 for u < 0,

and

ψ−(u) =
{

0 for u ≥ 0,

ψ(u) for u < 0.

Obviously, absolute ruin can only occur at the moment a claim arrives. So absolute ruin cannot
occur before the first claim. Therefore, we condition on the arrival time S1 and the amount
of the first claim, U1. Write s̄t�r = ∫ t

0 ers ds. Given that S1 = t and U1 = y, the surplus
just after the arrival of the first claim is R(0)ert + ps̄t�r if R(0) ≥ 0 and R(0) + ps̄t�α if
−p/α < R(0) < 0. Let

a+(t) = uert + ps̄t�r for u ≥ 0, t (u) = 1

α
log

p

αu+ p
for u < 0,

and
a−(t) = ueαt + ps̄t�α 1{t < t (u)} + ps̄t�r 1{t ≥ t (u)} for u < 0.

So the conditional probability that the company will not go bankrupt is ψ(a+(t)) if u ≥ 0 and
ψ(a−(t)) if −p/α < u < 0. Then we have

ψ+(u) =
∫ ∞

0
λe−λt dt

( ∫ a+(t)

0
ψ+(a+(t)− y) dF(y)

+
∫ a+(t)+p/α

a+(t)
ψ−(a+(t)− y) dF(y)

)
for u ≥ 0
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and

ψ−(u) =
∫ t (u)

0
λe−λt dt

∫ a−(t)+p/α

0
ψ−(a−(t)− y) dF(y)

+
∫ ∞

t (u)

λe−λt dt

(∫ a−(t)

0
ψ+(a−(t)− y) dF(y)

+
∫ a−(t)+p/α

a−(t)
ψ−(a−(t)− y) dF(y)

)
for −p

α
< u < 0.

Changing variable according to s = a−(t) gives us

ψ+(u) = λ(p + ru)λ/r
∫ ∞

u

(p + rs)−λ/r−1 ds

×
(∫ s

0
ψ+(s − y) dF(y)+

∫ s+p/α

s

ψ−(s − y) dF(y)

)
for u ≥ 0 (2.1)

and

ψ−(u) = λ(p + αu)λ/α
∫ 0

u

(p + αs)−λ/α−1 ds
∫ s+p/α

0
ψ−(s − y) dF(y)

+ λpλ/re−λt (u)
∫ ∞

0
(p + rs)−λ/r−1 ds

×
(∫ s

0
ψ+(s − y) dF(y)+

∫ s+p/α

s

ψ−(s − y) dF(y)

)
for −p

α
< u < 0.

(2.2)

Next, we will proceed to derive integro-differential equations for the probabilities of survival.
Before doing this, we need to show that the functions concerned are differentiable. It has been
shown for some continuous-time risk processes that the ruin probability as a function of the
initial reserve is smooth if the claim size distribution function is regular enough. These kind of
analytic properties for the ruin probability or some other frequently concerned ruin functions
with respect to the initial capital u have been considered in the literature for some other models.
Zhu and Yang (2006) obtained sufficient conditions on the claim size distributions for the
continuity and differentiability (of higher order). Without much modification, the technique
used there can be adopted to show that the absolute ruin probability in this model is differentiable
if the claim size distribution function F(x) is continuous.

By differentiating (2.1) and (2.2) with respect to u, we obtain

ψ+
′
(u) = λ

p + ru
ψ+(u)− λ

p + ru

∫ u

0
ψ+(u− y) dF(y)

− λ

p + ru

∫ u+p/r

u

ψ−(u− y) dF(y) for u > 0, (2.3)

ψ−
′
(u) = λ

p + αu
ψ−(u)− λ

p + αu

∫ u+p/α

0
ψ−(u− y) dF(y) for −p

α
< u < 0. (2.4)

We point out here that the integro-differential equation for ψ−(u), (2.4), is independent of
ψ+(u). But the solution ψ−(u) is subject to certain boundary conditions which may involve
ψ+(u).
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Note that (2.3) can be rewritten as

(p + ru)ψ+
′
(u) = λψ+(u)− λ

∫ u

0
ψ+(u− y) dF(y)− λ

∫ u+p/α

u

ψ−(u− y) dF(y).

(2.5)

Define

g(u) =
∫ u

0
dx

∫ x+p/α

x

ψ−(u− y) dF(y). (2.6)

Replacing u by x in the integro-differential equation (2.5) and integrating both sides from 0 to
u yields, for u > 0,

(p + ru)ψ+(u)− pψ+(0)− r

∫ u

0
ψ+(x) dx = λ

∫ u

0
ψ+(u− y)F (y) dy − λg(u),

where F(y) = 1 − F(y), i.e.

ψ+(u) = p

p + ru
ψ+(0)+ r

p + ru

∫ u

0
ψ+(u− y) dy

+ λ

p + ru

∫ u

0
ψ+(u− y)F (y) dy − λ

p + ru
g(u). (2.7)

For convenience, we introduce the function

G(u) = ψ+(u)− ψ+(0)
1 − ψ+(0)

for u ≥ 0,

and study this function instead. Then, ψ+(u) = ψ+(0)+ ψ+(0)G(u). Substituting this into
(2.7), we have

(p + ru)G(u) = λ
ψ+(0)
ψ+(0)

∫ u

0
F(y) dy + λ

∫ u

0
G(u− y)F (y) dy

+ r

∫ u

0
G(y) dy − λ

1

ψ+(0)
g(u). (2.8)

Let ρ = λµF , b = λ/ψ+(0), and K = ρψ+(0)/ψ+(0). Let Fe(u) be the equilibrium
distribution function associated with the distribution function F(u), i.e.

Fe(u) = µ−1
F

∫ u

0
F(x) dx.

Then, (2.8) can be rewritten as

pG(u)+ ruG(u) = r

∫ u

0
G(y) dy +KFe(u)+ ρG ∗ Fe(u)− bg(u), (2.9)

where ‘∗’ stands for the Stieltjes convolution.
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3. Heavy-tailed claim size

In this section we consider the case where the claim size distribution is heavy tailed and
obtain an asymptotic formula for the absolute ruin probability. First, we introduce a special
class of heavy-tailed distributions and some of their properties.

Definition 3.1. A distribution function F(x) with support (0,∞) is subexponential if

lim
x→∞

F ∗n(x)
F (x)

= n for some n ≥ 2.

Use S to denote the class of subexponential distribution functions. An alternative definition
of the subexponetial distribution function is stated below.

Definition 3.2. Let (Xi)i∈N be independent and identically distributed random variables with
distribution function F(x) with support (0,∞). Then F(x) is a subexponential distribution
function if

lim
x→∞

P(X1 + · · · +Xn > x)

P(max(X1, . . . , Xn) > x)
= 1 for some n ≥ 2.

Definition 3.2 demonstrates the heavy tailedness of subexponential distribution functions.

Lemma 3.1. If F ∈ S then

lim
x→∞

F(x − y)

F (x)
= 1 for any y ∈ R, (3.1)∫ ∞

0
eεx dF(x) = ∞ for any ε > 0, (3.2)

F(x)

e−εx → ∞ as x → ∞ for any ε > 0. (3.3)

The name subexponential distribution function arises from property (3.3): the tail of the
distribution function decreases more slowly than any exponential tail. Property (3.2) shows
that subexponential distribution functions have no exponential moments. In the following we
use the notation ‘∼’ to denote the asymptotic equivalence between two functions of the same
variable as this variable goes to ∞.

Lemma 3.2. (i) If the distributions F ∈ S and Gi(x) ∼ ciF (x), where ci ∈ (0,∞) for
i = 1, 2, then

G1 ∗G2(x) ∼ (c1 + c2)F (x).

(ii) If the distributions F ∈ S and G(x) ∼ cF (x), where c ∈ [0,∞), then

F ∗G(x) ∼ (1 + c)F (x).

Lemma 3.3. Suppose thatpn ≥ 0 for all n = 0, 1, . . . ,
∑∞
n=0 pn = 1, and

∑∞
n=0pn(1+ε)n <

∞ for some ε > 0, and let the distribution F ∈ S. Then

1 −
∞∑
n=0

pnF
n∗(x) ∼

∞∑
n=0

npnF(x).
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Subexponential distributions can be used to model claims with extremely large values, which
is often seen in insurance, known as catastrophe insurance. For more information about this
class of distributions, we refer the reader to Embrechts et al. (1997).

Next we will assume that the integrated tail distribution functionFe(x) is subexponential. We
are interested in the asymptotic behavior of the absolute ruin probability for large u. Cai (2007)
studied the same problem when the credit interest was 0, but the technique used there does not
apply to our case where positive capital earns interest. The approach we use here is motivated
by Kalashnikov and Konstantinides (2000).

Introduce an auxiliary function

k(u) =
∫ ∞

u

y dG(y) for u ≥ 0.

Lemma 3.4. Assume that F(x) is continuous, p > λµF , and that Fe(u) ∈ S. Then

k(u) ∼ ρ +K

r
(1 − Fe(u)).

Proof. Noting that
∫ u

0 G(y) dy = uG(u)− ∫ u
0 y dG(y), it follows from (2.9) that

pG(u) = −r
∫ u

0
y dG(y)+KFe(u)− bg(u)+ ρG ∗ Fe(u),

i.e.

G(u) = − r

p
(k(0)− k(u))+ K

p
Fe(u)− b

p
g(u)+mG ∗ Fe(u), (3.4)

where m = ρ/p < 1. Letting u converge to ∞, we have

1 = − r

p
k(0)+ K

p
− b

p
g(∞)+m. (3.5)

Define

H(u) =
∞∑
n=0

mnF ∗n
e (u) (3.6)

and
η(u) = k(0)− k(u).

Note that Fe ∗H(u) = (H(u)− 1)/m. Then from (3.4) we have

G(u) = − r

p
η ∗H(u)+ K

p
Fe ∗H(u)− b

p
g ∗H(u). (3.7)

Applying the Laplace–Stieltjes transform to (3.7) gives

Ĝ(s) = − r

p
η̂(s)Ĥ (s)+ K

p
F̂e(s)Ĥ (s)− b

p
ĝ(s)Ĥ (s), (3.8)

where F̂e(·) and ĝ(·) are the Laplace–Stieltjes transform of Fe(·) and g(·), respectively. Noting
that

Ĥ (s) = 1

1 −mF̂e(s)
,
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it follows from (3.8) that

η̂(s) = −p
r
Ĝ(s)+ ρ

r
Ĝ(s)F̂e(s)+ K

r
F̂e(s)− b

r
ĝ(s),

where Ĝ(·) is the Laplace–Stieltjes transform of G(·). Inverting the above relation yields

η(u) = −p
r
G(u)+ ρ

r
G ∗ Fe(u)+ K

r
Fe(u)− b

r
g(u).

By (3.5) we obtain

k(u) = k(0)− η(u)

= −p
r
(1 −G(u))+ ρ

r
(1 −G) ∗ Fe(u)+ K + ρ

r
(1 − Fe(u))

− b

r
(g(∞)− g(u)). (3.9)

By definition (2.6) we see that

g(∞)− g(u) =
∫ ∞

u

dx
∫ x+p/α

x

ψ−(u− y) dF(y)

≤ µF

(
Fe(u)− Fe

(
u+ p

α

))
∼ o(Fe(u)), (3.10)

where the last equivalence follows from (3.1). Noting that

k(u) ≥ u(1 −G(u)),

it follows from (3.9) that

k(u) ≥
(

1 + p

ru

)−1(
K + ρ

r
(1 − Fe(u))− b

r
(g(∞)− g(u))

)
. (3.11)

Since η ∗H(u) = ∫ u
0 η(u− y) dH(y) ≤ η(u)H(u), from (3.7), it follows that

G(u) ≥ − r

p
η(u)H(u)+ K

p
Fe ∗H(u)− b

p
g ∗H(u).

Hence,

η(u) ≥ KFe ∗H(u)− bg ∗H(u)− pG(u)

rH(u)
.

As a result,

k(u) ≤ k(0)− KFe ∗H(u)− bg ∗H(u)− pG(u)

rH(u)
. (3.12)

For any bounded positive increasing function f with support (0,∞), let f̃ (x) denote the
normalized function f (x)/f (∞). Then, by (3.5) and (3.12), we obtain

k(u) ≤ r(H(u))−1(−rk(0)H(∞)(1 − H̃ (u))+KH(∞)(1 − Fe ∗ H̃ (u))
− bg(∞)H(∞)(1 − g̃ ∗ H̃ (u))). (3.13)
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Note that, by Lemma 3.3 and (3.6), we have

1 − H̃ (u) ∼
∞∑
n=0

(1 −m)nmn(1 − Fe(u)) = m

1 −m
(1 − Fe(u))

and by (3.10) we have

g̃(u) ∼ o(1 − Fe(u)).

As a result, by Lemma 3.2 we obtain

1 − Fe ∗ H̃ (x) ∼ 1

1 −m
Fe(x),

1 − g̃ ∗ H̃ (x) ∼ m

1 −m
Fe(x).

Then, it follows that the right-hand side of (3.13) is asymptotically equivalent to ((ρ+K)/r)(1−
Fe(u)). By Lemma 3.2 again, (3.5), and (3.10), we see that the right-hand side of (3.11) is also
asymptotically equivalent to ((ρ +K)/r)(1 − Fe(u)). This concludes the proof.

Theorem 3.1. IfF is continuous, the equilibrium distribution functionFe(u) is subexponential,
and

lim sup
u→∞

(
Fe(u)

u

)−1 ∫ ∞

u

Fe(y)

y2 dy < 1,

then

ψ(u) ∼ λ

r

∫ ∞

u

F (y)

y
dy. (3.14)

Proof. First, we assume that p > λµF . From the definition of k(u) and noting that
limu→∞ k(u)/u = 0, we have

1 −G(u) = −
∫ ∞

u

1

y
dk(y) = k(u)

u
−

∫ ∞

u

k(y)

y2 dy.

By Lemma 3.4, it follows that

k(u)

u
∼ ρ +K

r

1 − Fe(u)

u
,∫ ∞

u

k(y)

y2 dy ∼ ρ +K

r

∫ ∞

u

1 − Fe(y)

y2 dy.

Note that, for any positive functions a1(x), a2(x), b1(x), and b2(x), with a1(x) ∼ b1(x),
a2(x) ∼ b2(x), and b1(x) ≥ b2(x), there exists, for any ε > 0, an M > 0 such that, for any
x ≥ M ,

|a1(x)− b1(x)| < b1(x)ε

and

|a2(x)− b2(x)| < b2(x)ε.
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Therefore, ∣∣∣∣a1(x)− a2(x)

b1(x)− b2(x)
− 1

∣∣∣∣ =
∣∣∣∣a1(x)− b1(x)− (a2(x)− b2(x))

b1(x)− b2(x)

∣∣∣∣
≤ b1(x)ε + b2(x)ε

|b1(x)− b2(x)|
= b1(x)+ b2(x)

b1(x)− b2(x)
ε

= 1 + b2(x)/b1(x)

1 − b2(x)/b1(x)
ε.

If we have lim supx→∞ b2(x)/b1(x) < 1 then it follows that

a1(x)− a2(x) ∼ b1(x)− b2(x).

Hence, by (2.2)–(2.5), we obtain

1 −G(u) ∼ ρ +K

r

(
1 − Fe(u)

u
−

∫ ∞

u

1 − Fe(y)

y2 dy

)

= ρ +K

r

∫ ∞

u

dFe(y)

y
.

Consequently,

ψ+(u) = ψ+(0)(1 −G(u)) ∼ λ

r

∫ ∞

u

F (y)

y
dy. (3.15)

Next, we consider the case in which λµF ≥ p. Let Su,p(t) denote the surplus at time t of a
risk process following the dynamics (1.1) and with premium rate p and initial value u. Then,
for any u > 0 and 0 ≤ u0 ≤ u, Su−u0,p+ru0(t) = Su,p(t) − u0 when Su−u0,p+ru0(t) ≥ 0 or,
equivalently, Su,p(t) ≥ u0. After the time that Su,p(t) first falls below u0, Su−u0,p+ru0(t) ≤
Su,p(t)−u0. Note that the critical level for the process Su,p(t) is −p/α, while the critical level
for Su−u0,p+ru0(t) is −p/α − (r/α)u0 ≥ −p/α − u0. Therefore, if we let φ(u, p) denote the
ruin probability corresponding to the process Su,p(t), we can see that

φ(u, p) ≤ φ(u− u0, p + ru0). (3.16)

Choose u0 = (λµF − p + ε)/r for some small ε > 0. Then, p + ru0 > λµF . Hence,
by (3.15),

φ(u− u0, p + ru0) ∼ λ

r

∫ ∞

u−u0

F(y)

y
dy ∼ λ

r

∫ ∞

u

F (y)

y
dy. (3.17)

Since p ≤ λµF , it is easy to obtain, for any ε > 0

φ(u, p) ≥ φ(u, λµF + ε) ∼ λ

r

∫ ∞

u

F (y)

y
dy, (3.18)

where the last equivalence follows from (3.15) by noting that the premium rate λµF + ε is
strictly greater than λµF . Combining (3.16), (3.17), and (3.18), we can conclude that (3.14)
also holds for λµF ≥ p.

Remark 3.1. Letting α → ∞, the model reduces to the ordinary ruin case. Here, our
asymptotic result holds without restricting p > λµF .
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4. Light-tailed claim size

We consider the case that the claim size distribution is light tailed. Use f̂ (s) orL(f (u), u, s)
to denote the Laplace–Stieltjes transform of the function f (u) with respect to u with dummy
parameter s. Namely,

f̂ (s) = L(f (u), u, s) =
∫ ∞

0
e−su df (u).

Note that L(uG(u), u, s) = L(
∫ u

0 G(x) dx, u, s) − Ĝ′(s). Applying the Laplace–Stieltjes
transform to both sides of (2.9), we find that

pĜ(u)− rĜ′(u) = KF̂e(u)+ ρĜ(s)F̂e(s)− bĝ(s). (4.1)

Introduce

χ(x) =
∫ x

0
(p − ρF̂e(y)) dy.

Since χ(x) → ∞ as x → ∞, solving the ordinary differential equation (4.1) gives

Ĝ(s) = 1

r

∫ ∞

s

e−(χ(v)−χ(s))/r (KF̂e(v)− bĝ(v)) dv. (4.2)

Relation (4.2) can be used to obtain asymptotic results about the ruin probabilities in the light-
tailed case.

Theorem 4.1. If F(x) is a continuous distribution function and the equilibrium distribution
Fe(x) is exponentially bounded, i.e. 1 − Fe(x) ≤ Ce−ax for some positive constants a and C,
then, for any ε > 0,

ψ(u) = o(e−(a−ε)u),
ψ(u)e(a+ε)u → ∞ as u → ∞.

Proof. We can obviously see that −a is the negative abscissa of convergence of F̂e(s).
Noting that (1 − F̂e(s))/s = ∫ ∞

0 e−sxFe(x) dx, we have F̂e(s) ≤ 1 if s ≥ 0 and F̂e(s) ≤
Ca/(s + a)+ 1 − C if −a < s < 0. Next, we show that

lim
v→∞

∫ v
0 F̂e(x) dx

v
= 0. (4.3)

This is obviously true if
∫ ∞

0 F̂e(x) dx < ∞. If
∫ ∞

0 F̂e(x) dx = ∞, by L’Hospital’s law we can
show that (4.3) is still true since lims→∞ F̂e(s) = 0. It readily follows from (4.3) that, for any
s > −a and any 0 < ε0 < p/r ,

exp

(
−p
r
(v − s)+ ρ

r

∫ v

s

F̂e(x) dx

)
= o(exp(−ε0v)) as v → ∞.

Hence, we can see that, for any s > −a,∫ ∞

s

exp

(
−p
r
(v − s)+ ρ

r

∫ v

s

F̂e(x) dx

)
dv < ∞. (4.4)

https://doi.org/10.1239/jap/1222441831 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1222441831


The compound Poisson risk model 829

Using integration by parts, we obtain, for s > −a,

∫ ∞

s

e−(χ(v)−χ(s))/r F̂e(v) dv

=
∫ ∞

s

exp

(
−p
r
(v − s)+ ρ

r

∫ v

s

F̂e(x) dx

)
F̂e(v) dv

= r

ρ

∫ ∞

s

exp

(
−p
r
(v − s)

)
d exp

(
ρ

r

∫ v

s

F̂e(x) dx

)

= − r

ρ
+ p

ρ

∫ ∞

s

exp

(
−p
r
(v − s)+ ρ

r

∫ v

s

F̂e(x) dx

)
dv. (4.5)

It easily follows, from (4.4) and (4.5), that the function
∫ ∞
s

e−(χ(v)−χ(s))/r F̂e(v) dv is conver-
gent for all s > −a.

For all s < −a, as F̂e(s) = ∞, we can conclude that the function
∫ ∞
s

e−(χ(v)−χ(s))/r F̂e(v) dv
is not convergent. Consequently, we have

∫ ∞

s

e−(χ(v)−χ(s))/r F̂e(v) dv

{
< ∞ for −a < s < ∞,

= ∞ for s < −a. (4.6)

Since it follows from (2.6) that

ĝ(v) ≤
∫ ∞

0
e−vx dx

∫ x+p/α

x

dF(y) ≤
∫ ∞

0
e−vxF (x) dx = µF F̂e(v),

we can see that∫ ∞

s

e−(χ(v)−χ(s))/r ĝ(v) dv ≤ µF

∫ ∞

s

e−(χ(v)−χ(s))/r F̂e(v) dv. (4.7)

Then it follows, from (4.2), (4.6), and (4.7), that −a is the abscissa of the convergence of the
Laplace–Stieltjes transform Ĝ(s). By Corollary 2.1 and Theorem 2.2b of Widder (1946), we
deduce the asserted result.

Remark 4.1. Letting α → ∞, the absolute ruin problem reduces to the ordinary ruin problem.

In Theorem 4.1 we derive the same result as in Theorem 2 of Embrechts and Schmidli (1994).
In that paper the authors made a lot effort in constructing a positive martingale and using the
martingale convergence theorem to express the ruin probability in terms of a certain function.
The result there holds under the assumption that p > λµF . Here we demonstrate another way
to prove the asymptotic result when p > λµF and, more importantly, Theorem 4.1 extends the
result to the case where p ≤ λµF .
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