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Abstract

Dialogues are turn-taking games which model debates about the satisfaction of logical formulas. A novel
variant played over first-order structures gives rise to a notion of first-order satisfaction. We study the
induced notion of validity for classical and intuitionistic first-order logic in the constructive setting of
the calculus of inductive constructions. We prove that such material dialogue semantics for classical
first-order logic admits constructive soundness and completeness proofs, setting it apart from standard
model-theoretic semantics of first-order logic. Furthermore, we prove that completeness with regard to
intuitionistic material dialogues fails in both constructive and classical settings. As an alternative, we
propose material dialogues played over Kripke structures. These Kripke material dialogues exhibit con-
structive completeness when restricting to the negative fragment. The results concerning classical material
dialogues have been mechanized using the Coq interactive theorem prover.
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1. Introduction

Logical dialogues were introduced by Lorenzen (1960, 1961), a philosopher and constructive
mathematician active throughout the latter half of the twentieth century. They are a result of his
search for a constructively acceptable account of mathematics, beginning with his work on opera-
tive mathematics (Lorenzen 1955). Logical dialogues are turn-taking games which model a debate
in which the proponent defends the validity of a formula against the criticisms of an opponent.
The games’ moves are modeled after speech acts: asserting formulas and questioning assertions
made by the opposing player. In this, they differ from the more wide-spread logical games in the
style of Hintikka (1968), in which a formula is reduced to its atoms by both players, the turn order
being determined by the syntactical structure of the formula. Although logical dialogues were ini-
tially put forward as a semantics for intuitionistic logic, they can also capture classical logic (see
e.g. Lorenz 1961).

Any dialogue begins with the proponent asserting a formula to be discussed. The players then
take turns, starting with the opponent. The player at turn can choose between two possible moves:
Either they can attack an assertion made by the opposing player or they can defend against such
an attack, usually by asserting another formula. Some attacks require the attacking player to assert
a formula while carrying out the attack, in which case the assertion in question is called an admis-
sion. As an example, attacking the asserted formula ¢ — ' requires the attacker to admit ¢ while
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attacking. To defend against the attack on ¢ — 1, the attacked player must assert y. As in many
games, finite plays are won by the player who made the last move. Infinite plays are always won
by the opponent. To prevent the opponent from winning by stalling indefinitely, for example
through repeated attacks on the proponents initial assertion, additional restrictions are imposed
on the opponent’s legal moves. The most common such restriction is to only allow the opponent to
react to the proponent’s previous move (see Krabbe 2006 for a survey of alternative restrictions).

Meaning of logical connectives in dialogues is captured by attacks and defenses which allow
the players to break down assertions into subformulas. However, this approach does not directly
extend to atomic formulas. There are two different methods for treating atomic formulas in logi-
cal dialogues. Material dialogues, the variant originally proposed by Lorenzen (1960, 1961), permit
attacks on atomic formulas. To defend against such an attack, the attacked player is required to
demonstrate the validity of the atomic formula. In Lorenzen’s original formulation, this meant
deriving a word according to a grammar, a remainder of his operative semantics of mathemat-
ics (Lorenzen 1955). Formal dialogues, which were put forward in the dissertation of Lorenzen’s
student (Lorenz 1961), treat atomic formulas without appealing to their ‘underlying meaning i.e.
by purely syntactic means. In this setting, atomic formulas cannot be attacked by either player
and an additional restriction is imposed on the proponent: They may only assert those atomic
formulas which the opponent has asserted previously. Historically, the study of logical dialogues
after Lorenzen’s and Lorenz’ initial work has been focused on formal dialogues due to their greater
simplicity (see Krabbe 2006). Sorensen and Urzyczyn (2007) have demonstrated that the winning
strategies of formal dialogues for propositional logic are structurally similar to sequent calculus
derivations, a result which has been extended to first-order logic in Forster et al. (2020).

If one fixes the ‘demonstration’ of atomic formulas in a material dialogue to be its satisfaction
in a previously agreed upon first-order structure, this induces a model-theoretic notion of satis-
faction and, by quantifying over all models, validity. In this article, we study the arising semantics
of first-order logic in the constructive setting of the calculus of inductive constructions (Coquand
and Huet 1986; Paulin-Mohring 1993). This work extends previous investigations into the con-
structivity of completeness theorems for various semantics of first-order logic, including formal
dialogues for intuitionistic first-order logic, in Forster et al. (2020, 2021) . The article’s results
concerning classical material dialogues (Section 3) have been mechanized using the Coq inter-
active theorem prover, the mechinzation being located at Wehr and Kirst (2022b). The results
concerning intuitionistic logic in Sections 4 and 5 have so far not been mechanized.

1.1 Outline and contributions

This section summarizes the article’s results. Section 2 covers some basic definitions and results
we rely on throughout the article. We close with a brief discussion of various questions aris-
ing from this article in Section 6. Note that our use of “soundness” and “completeness” may be
somewhat unusual. When speaking of the soundness of a semantics, the intended meaning is the
soundness of some suitable deduction system with regard to said semantics (and similarly for
“completeness”). While non-standard, this terminology allows us to be more concise about the
results derived in this article.

This article is an extended version of the conference article (Wehr and Kirst 2022a). The
present article adds the treatment of Kripke material dialogues (Section 5) and brings the infor-
mation on constructive reverse mathematics of first-order completeness theorems up-to-date.

Classical material dialogues In Section 3, we define material dialogues for classical first-order
logic. We prove their soundness with regard to a cut-free, classical sequent calculus. Notably,
classical material dialogues are sound on any first-order structure, whereas classical Tarski seman-
tics require the underlying structure to satisfy all instances of the law of the excluded middle
(LEM), a property not necessarily given for all structures in a constructive setting. This means
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that, informally speaking, the ‘classicality’ of classical material dialogues rests within their rules
of engagement, not the underlying first-order structures. We further prove that classical material
validity entails exploding classical Tarski validity, a constructively stricter notion than standard
classical Tarski validity. We then use the constructive completeness of exploding classical Tarski
validity (Veldman 1976) to deduce the same for classical material dialogues. Notably, we obtain
completeness for the full syntax of first-order logic fully constructively. The analogous result for
Tarski semantics is equivalent to a non-constructive principle called WLEMS in Herbelin and
Kirst (2023). The results of Section 3 have been mechanized in Coq, the mechanization being
located at Wehr and Kirst (2022b).

Intuitionistic material dialogues In Section 4, we analyze material dialogues for first-order logic
with the usual rules of dialogues of intuitionistic logics. We prove that standard Tarski validity on
the fragment ® given below entails intuitionistic material validity.

a,b:Aw=1L|Ptlarblavb]|Ixa
oV ri=aloAyleVvyla— Y| Vx| Ixg

This means that proving completeness with regard to intuitionistic material dialogues is tan-
tamount to disproving non-constructive principles on the meta-level. As such principles are
consistent with most constructive theories, completeness cannot be established without additional
axioms. In fact, intuitionistic and classical material dialogues completely coincide under the full
LEM. The natural material rendition of intuitionistic dialogues is thus ill-suited as a semantics of
intuitionistic first-order logic. The results of Section 4 have not been mechanized.

Kripke material dialogues In view of the results in Section 4, we propose an alternative dialogical
semantics in Section 5. As classical material dialogues could be considered ‘classical dialogues
played on the canonical structure for classical semantics, we consider its natural analogue:
intuitionistic dialogues played on Kripke structures, the canonical structure for intuitionistic
semantics. We demonstrate their suitability by deriving many of the same results for them as
for the classical material dialogues of Section 3. We prove them sound with regard to a cut-free
intuitionistic sequent calculus. Furthermore, we show that Kripke material validity entails explod-
ing Kripke validity. We extend the constructive completeness of exploding Kripke models for the
Y, —, L-fragment (Herbelin and Lee 2009) to Kripke material dialogues. The results of Section 5
have not been mechanized.

2. Preliminaries
2.1 The calculus of inductive constructions

The results of this article are all derived within the Calculus of Inductive Constructions CIC, the
constructive type theory underlying the interactive theorem prover Coq (Coquand and Huet 1986;
Paulin-Mohring 1993). The CIC consists of a predicative hierarchy of type universes T; above an
impredicative universe P of propositions. Each type universe contains an empty type, products
A x B, sums A + B, function types A — B, dependent products I1a : A.B(a), and dependent sums
Ya:A.B(a). In P, we denote them by their respective Curry-Howard correspondents L, A, V,
—,V,3. Allowing unrestricted elimination from P into the T; results in an inconsistency.
However, this restriction can be lifted for some types in PP, including types of at most one con-
structor, such as L and the equality type = : [IA.A — A — P with a sole constructor of type
V(a:A).a=a.

We make use of various inductive types. The natural numbers (n:N::=0 | Sn) are defined
in the usual fashion of Peano. Now fix some type A. Option types (0(A) :="a"' | ) are used to
model optional parameters of type A in later definitions, i.e. ) denotes the absence of the parame-
ter and "a ' denotes the presence of a parameter a : A. Members of list types (I: Z(A) ::=[] |a::])
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Figure 1. De Bruijn representation of Vx.Px — Vz.Q x z.

are finite sequences of values of type A, [] denoting the empty list and a :: [ denoting a given list
I: £(A) extended by a value a: A. We write [ay, ..., a,] for the list a; :: (... :: (a,, :: [])), denote list
membership by a € | and take I4+ I’ to be the list appending operation.

2.2 First-order predicate logic

2.2.1 Syntax with de Bruijn binders

Fix a signature ¥ of functions symbols f and predicate symbols P, denoting their arities by |f| and
|P|, respectively. The associated term and formula languages are defined below. Here, the right
columns ascribe types to the variables used in the definitions.

Tu=n|fi N.f: 5,13V
e:Fu=L|PtloAY eV¥ o>y | Vel 3g P:3,i: 3"

To aid in the distinction between meta- and object-level syntax, we write small dots over the
connectives of the latter. Negation is defined as — ¢ := ¢ —> 1.

Observe the absence of variables as part of the quantifiers. This is because we employ syn-
tax with de Bruijn binders, a notion developed by de Bruijn as part of the implementation
of the AUTOMATH theorem prover (de Bruijn 1972). In a fully formal setting, such as the
mechanization accompanying this article (Wehr and Kirst 2022b), they allow for the treatment
of syntax, binders and substitutions with much greater ease than the common named binders
approach. Even though definitions using named binders tend to be easier understood, we have
decided to follow our mechanization, presenting this article in the de Bruijn-style. Adapting the
material to named binders would require drastic changes to most definitions and proof strate-
gies, leaving the article disconnected from the formalization and the assurance of correctness it
provides.

In de Bruijn syntax, the variables are represented by natural numbers # : N, called de Bruijn
indices. Such an index indicates its binding quantifier by counting the number of quantifiers
between it and said binding quantifier in the syntax tree. For an example consider the for-
mula V x.(Px > V¥ z.Q x z) which is represented by V (P0 —> ¥ Q10) in de Bruijn syntax. Fig. 1
depicts the references described by the indices. Observe that the variable x is represented by
different indices depending on its position in the syntax tree.

Indexes pointing ‘beyond’ the quantifiers of a formula are taken to be free variables. In
P0—> VQ12, the indexes 0 and 1 refer to the same free variable whereas 2 refers to the ‘next’
free variable. In a formula ¥ ¢, stripping away the quantifier ‘reveals’ a new fresh variable in ¢,
referred to by 0 at the top-level. If this variable is supposed to be fresh, as for example required in
the V R-rule of a sequent calculus, the indexes of free variables in other formulas must be ‘shifted’
by 1. This shifting operation 1 plays a key role in the definitions of proof systems and dialogue
rules in this article. It is defined in terms of a recursive operation shift,, on terms and formulas with
shorthand 4¢ := shifty ¢. Below, O € { A, v, = }and O € {V, 3}. Note especially the increase
of k in the quantifier case.
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. . - —_—
shift, 1 := 1 shifty (P t) := P (shifty t) shifty (¢ O ) := (shift, @) O (shifty ¥r)

shift, (Og) := O(shiftey @) shifte (F7):=f (shiftg 1) shiftem:={ m <k
K== k1@ k o k T Im+1 otherwise
We write ¢[t] to denote the result of substituting a term ¢ for the free variable denoted by 0
at the top-level of ¢. While the substitution operation behaves as one would expect, it is rather
intricate to define, which is why we refer curious readers to, e.g. Abadi et al. (1991).

2.2.2 Model-theoretic semantics

A structure S consists of a type X, a predicate interpretation PS : X\P| — P for each P: ¥, a function
interpretation fS : X/l — X for each f : ¥ and an absurdity interpretation 1.5 : P. A model consists
of astructure S together with an assignment p : N — X. The term evaluation function ¢” in a model
S, p is defined as n” := p n and (f 1P = fS °. The Tarski satisfaction relation p E ¢ is defined
below. We often write S for X, e.g. writing s : S instead of s : X.

pEPT & PSP PE9>Y & pFo—>pEY
PEQAY & pEoApEY PEQVY & pEeVpEY
PEVYe & Vs:S. s-pkFo pEdp & Fs:S. s-pkFy
pEl & 18
Here, we write s - p with s : S for the assignment extension operation which is defined as below.
(s-p)(0):=s (s- p)(Sn):= p(n)

Note that below the quantifier, the indices of all variables not bound by that quantifier are incre-
mented. This ensures that each variable refers to the correct element in s- p in the definition
above.

For a finite context I', we write pE " if pE @ for all ¢ €. A structure S is classical if
for all assignments p and formulas ¢ it satisfies the principle of double-negation elimination
(p E——=¢ > ). A structure S is exploding if for all assignments p and formulas ¢ it satisfies
the principle of explosion (p F L —> ). A structure S is standard if 1.3 is contradictory (i.e. =1$
holds). Observe that all standard structures are exploding. An entailment between a finite con-
text I" and a formula ¢ is valid in classical exploding structures, written T" =F o, if for all classical,
exploding structures S and all assignments p it is the case that p F I" entails p = ¢. Validity of
entailments in classical standard structures, T S @, is defined analogously.

A Kripke frame is a pair (K, <). That is, a type K of worlds and a reachability preorder <:
K — K — P on that type which is proof irrelevant, i.e. H=H’ for any H, H' : k <k'. A Kripke
structure consists of a Kripke frame (K, <), a family S: ITk: K.S of structures and a family of
functions ¢ : Ik, K’ : K.k < k' — Sy — Sy. Writing P¥ as a shorthand for Pk, we require that P¥
entails PX (1(k < k¥')(3)) and furthermore t(k' < k")(c(k < K')(s)) = t(k < k”)(s) for all s : Si. To aid
readability, we denote environments by p* : N — Sy, the superscript indicating its codomain. For
k:K and s: S we write ¥ for ¢ (k < k) s where applicable, extending this to environments via
,ok/ = 1(k < k) o p¥ if pF is clear from the context. A Kripke model consists of a Kripke structure,
a world k and an environment p¥. Given a Kripke model, we define a relation p* I ¢, denoting
that ¢ is forced at a world k under the k-environment p* as below.

oFIFPT i PEF oflhe >y o VE<K. pFiFe — pF by
oKlFo Ay o pflFoApfiFy oFlFevy & prlkov pfiFy
oFIF Axp e 3s:Sk. s pFlkg pKIF Vxg & VYk<K,s:Sp. s pF kg
ofIF1 e 1K
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For a finite context I', we write p¥ IF " if pKI- ¢ for all p € T'. A Kripke structure is exploding
or standard if all Sy are such. A formula ¢ is valid in exploding Kripke structures in a context I,
written I F£ ¢, if for all exploding Kripke structures, all worlds k : K and all k-environments ok
we have that p¥ I T entails p* I 9. We denote validity in standard models with I" |=ﬁ . Validity
of entailments in standard Kripke structures, T' 5 ¢, is defined analogously.

2.2.3 Proof systems

Denote by I' =k A the derivability of the sequent I' = A in the sequent calculus for classi-
cal first-order logic defined below. The system’s presentation is somewhat non-standard as the
principal formulas of derivation rules are not removed from I" and A. This is convenient when
proving soundness as it parallels the requirements imposed on the proponent when attacking and

defending.
Piel PieA ler ¢p>Yel I'ske, A T,y =gA
Ax LLl——m L—
I'=kxA 'k A 'Sk A
. p>veN T, y=xo A . oAV el T,of =g A
- I'=>kA " I'=skA
. pAYeA T=go,A Ty, A ) vy el T,p=kA Dy=gA
AN Y
I'=>kA I'=xA
. eV eA T=ko ¥, A » Vel T,e[tl=xA
Vv
=k A '=rA
" VoeA 1T =g 1A . Jpel o=k 1A
I'=skA I'=skA

JpeA T=golt],A

R3
I'=gA

Similarly, denote by I' = § derivability of I" = § in the sequent calculus for intuitionistic first-
order logic defined below. The comments regarding treatment of formulas in I" and the quantifier
rules above also apply to this system.

Ptel ler p—>yell I'sjp Iy=é
AX——— Ll L
=Pt I'=;s I'=yé
Co=5 v pAY el T, ¢ =8 =59 I'=5y
—_——— LA RA -
ST EY F=,s T=ipAy
oV el T,p=8 T, =6 ['=j¢ I'=y
Lv R\/L—, R\/R—,
I'=y6 '=s;oVvy '=joVvy
Voel T,p[t]=8 T =) ¢ Jpel AT, =18
LV RV—mMmmm X L3
I=;8 F=; Ve =3
I = p[t]
RI——
I'=; d¢
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The following two results are taken from the literature, relying on ideas from Veldman (1976):

Theorem 1. The following hold in constructive settings when restricting T and ¢ to the ¥, =, 1-
[fragment of, respectively classical and intuitiomstic, first-order logic:

(1) Herbelin and Ilik (2016): T EE ¢ entails T =k ¢
(2) Herbelin and Lee (2009): ' hﬁ pentailsT' = ¢

3. Classical Material Dialogues

We begin by defining formally the material dialogues for classical first-order logic. Fix a standard
structure S the dialogue will be played over. Material dialogues are a turn-taking game between
two players. To win, the proponent must defend the satisfaction of some formula in a model,
whereas the opponent must challenge the proponent’s claims in such a way that the proponent
cannot respond. The dialogues we consider are so-called E-dialogues which restrict the opponent
to only ever react to the proponent’s directly preceding move, whereas the proponent may always
respond to any of the opponent’s previous moves. There exists another dialogue variant, which
lightens the restriction to the opponent to only being able to react to each proponent attack and
admission only once, to prevent ‘stalling’-tactics. The notion of satisfaction induced by both vari-
ants is identical (see e.g. Felscher 1985; Forster et al. 2021). We chose to work with E-dialogues
because they allow for simpler constructions and arguments. However, all results in this article
extend to D-dialogues via the aforementioned equivalence.

We model the dialogue game as a state transition system. A triple (p,A,C): (N—§) x
Z(8) x ZL(A) is called a dialogue state. Together S, p form the ambient model. The list A con-
tains all of the opponent’s assertions and C records all attacks that the opponent has leveled against
the proponent. Each round begins with the proponent making a move, indicated by a transition
(0, A, C) ~p (0, A’, C'); m from a dialogue state to a dialogue state and a proponent move m : M.
This is followed by an opponent move, indicated by a transition (p’, A’, C'); m ~=, (p”, A", C")
from a state and proponent move to a further state. We continue by defining the two transition
relations ~», and ~~,.

The type D of defenses, defined below, features three different kinds of defenses: D4 ¢ denotes
the act admitting of the formula ¢, Dy ¢ s denotes admitting ‘¢ [s]’ where s : S. Lastly, Dy ¢ means
claiming to be able to demonstrate that ¢ holds. Note that Dys ¢ is only ever instantiated with
atomic ¢.

D:=Ds¢|Dwe¢s|Dug ¢:35,s:8

The type A contains all attacks. One writes a > ¢ if a: A is an attack on ¢. Each a: A has an
associated set 7, of defenses against a. Both A and the associated 2, are laid out below. The
shifting operation 1y is extended to attacks in a point-wise manner, i.e. MAr ¢) = AL 1@, such
that a > ¢ whenever a > ¢.

A1 a, ={Dm 1}
Apf>Pi Dppi={Dm Pt}
AL oYy o>y Da_, oy ={Da ¥}
Avpy >V Da, oy ={Da ¢, Da ¥}
AL oAy D4, ¢ ={Da ¢}
ARY > @AY Dagy ={Da ¥}
Ao Vo Pasp ={Dw ¢ 5}
Aspr dg Daso={Dwes|s:S}
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Some attacks force the attacker to admit a formula. This is formalized by a function adm : A —
O(§) where adm a ="¢ " means that ¢ must be admitted when attacking with 4 and adma =
? means no admission need be made. The admission obligations are adm (A_, ¢ ) ="¢ ' and
adm a =¥ for all other attacks a : A.

Each round begins by the proponent making a move m : M, as detailed below: Either challeng-
ing one of the opponent’s assertions (PA a) or defending against a challenge previously issued by
the opponent, either by asserting a formula (PD ¢) or by demonstrating that an atomic formula
holds in the ambient model (PM ¢). The function move : D — M maps defenses to the proponent
move that needs to be made to carry out said defense.

m:M:=PAa|PD¢|PM¢p

move (D4 ¢) =PD ¢ move (Dy ¢ s) =PD ¢ move (Dy; ¢) =PM ¢

The effect of a proponent’s defense d on the game state is defined via a function d” as below.
Crucially, the shifting of admissions in A and attacks in C ensures that references to free variables
are not ‘disturbed’ by the update of p.

(s-p, 1A 1C)  ifd=Dwos

df (p,A,C) =
(b ) (p, A, C) otherwise

Defenses need to be justified by the ambient model. While D4 ¢ and Dy ¢ s are always justified,
Day ¢ requires p F ¢ to hold. All of the previous notations enable a compact definition of the state
transitions the proponent may induce by making a move.

peEA ab g ceC deP. pjustifiesd
PA PD

The opponent must react to the proponents previous move. If the proponent defended by
asserting a formula, they must issue a new challenge by attacking said assertion (OA). If the pro-
ponent attacked one of their assertions, they can either defend against said attack (OD) or counter
the attack, attacking the admission made by the proponent while attacking (OC). If the propo-
nent demonstrated the validity of an atomic formula in the ambient model, the opponent cannot
respond at all. The operation d© is defined analogously to d” and is used to define the transition
steps the opponent can induce by making a move. In a slight abuse of notation, we write c :: 4,
where c is an attack, for ¥ :: Aifadmc="v "and A ifadm ¢ = 0.

(o, A, Q) ifd=Dj ¢

d° (0, A, Q)= { (s p,p::14,1C) ifd=Dw¢s
oA c>o oc a>¢@ adma="y7 Y>>
(0, A, C);PD @~ (p, ¥ A, 1 C) (0,A,C); PAa~+,(p,ciA,c::C)

de 9, pjustifiesd
(p, A, C); PAa~s,d° (p, A, C)

A state can be won if the proponent can ensure the play always eventually ends. This is defined
as an inductive predicate which is very similar to the inductive well-foundedness predicate used in
type theory. A derivation of Win s can be viewed as a winning strategy for the proponent starting
from the state s: The first premise prescribes a move s ~+, s"; m which the proponent should play
and the second premise provides the proponent with winning strategies continuing after any pos-
sible opponent reaction to the prescribed proponent move. As Win s is an inductive predicate, its
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derivations must be well-founded and thus cannot have any infinite branches, meaning a propo-
nent “following” a winning strategy Win s must eventually be prescribed a move s~ s"; m whose
resulting state s’ does not allow for opponent reactions, making the second premise vacuously true
and the state s trivially winning for the proponent.

s~p s m Vs". s sm~sy 8" — Wins”
Win s
This notion of winnability extends to formulas ¢, denoted Win (p, A, C, ¢), which holds if for
all attacks c > ¢ it is the case that Win (p,c:: A, c:: C). A formula ¢ is dialogically entailed in a

context I', written " =P ¢, if for all standard structures S and assignments p : V — S it is the case
that Win (o, T, [], ¢).

Example 1. Sketched below is a strategy establishing Win (p, [P = Q, P],[Ag]) and thus
Win (p, [P = Q, P, [], Q). The proponent first attacks P —> Q. In both branches, the opponent
can only continue if an atomic formula is satisfied by the ambient model. The proponent can thus
carry out a ‘demonstration” (PM) of said atomic formula, winning the play. This strategy can be
played on any model S, p, meaning it suffices to establish P - Q, PFP Q.

(p, [P= Q,P], [Aq])

m)

(0, [P Q, Pl [Aq])s A (A PQ)

/OC/ — OD\
PAJ/ PAJ/

(IO’ [P_> Q P]’ [AQ’ AP]) ; PA Ap (:0> [P_> QP Q]a [AQ]) >PAAQ
ODlrequiresp':P ODlrequires pPEQ
PDlreliesonp’:P PDlreliesonpl:Q

(IO’ [P_> Q) P]) [AQ>AP]) ’PMP (IO’ [P_> Q) P’ Q]) [AQ])aPMQ

We continue by proving the classical material dialogues sound with regard to the cut-free clas-
sical sequent calculus from Section 2.2. This is the easiest soundness result to obtain because of
the structural similarity between winning strategies for dialogues and cut-free sequent calculus
derivations demonstrated in Serensen and Urzyczyn (2007). Recall also that the proofs in this
article work with the de Bruijn syntax. The results in this section were mechanized in Coq (Wehr
and Kirst 2022b).

The majority of the soundness proof is straightforward. A slight difficulty arises from the differ-
ing treatment of quantifiers by material dialogues and sequent calculi. Compare a typical LV-rule
with the state transition caused by the proponent attacking the admission ¥ ¢ with A;» ¢ and
the opponent responding defending, both given below. While the sequent calculus simply instan-
tiates the formula via a substitution ¢[f], material dialogues carry out the instantiation via the
assignment, requiring shifting of the admissions and challenges.

Voel T,eltl=kA
v ,I,C tP - p,0 A, AC
L A (p ) ~po (7 p, @ AT, 1C)

To prove soundness, one needs to show that these two methods of instantiation are ‘essentially
the same’. For this, we introduce congruence relations on different aspects of dialogues: Given
assignments p, p’ and formulas @, ¢’, we define an equivalence relation p, ¢ = p’, ¢’ which holds
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if  and ¢’ are equal up to term evaluations in the respective assignments. The definition is given
below, in which ¢y is a place-holder for all binary connectives and Ug for both quantifiers.

p__ o ;
t; =t foralli oeo=p,¢ p,v=p,Y
p,l=p,1 p, Pi=p, Pt P, 90 = p', 'Oy

vd.d-p,o=d-p, ¢
p,Op = p', 0y’
This congruence can be extended to attacks and defenses and it can be shown that these rela-

tions do indeed ‘act as congruences’ (see the mechanization for details). The following lemma is
crucial to the proof of soundness.

Lemma 1. Let (p, A, C) and (p', A, C') be dialogue states such that p, A= p’, A’ and p, C=p’, C'.
If Win (p, A, C) then Win (o', A’, C)).

In the following, and many other proofs in this article, we describe the construction of Win s
by describing a winning strategy for the proponent. As noted above, this naturally corresponds to
a unique Win s derivation.

Theorem 2 (Soundness). Let T, ¢ be such that T' =g ¢. Then T EP ¢.

Proof. For this, it suffices to show that for any standard structure S

=k A—>Vp,A,C.(Vse AJceC.c>dA VY. admce="¢y " — ¢ € A))
— T CA— Win(p,A,C)

because it allows one to conclude Win (p, ¢ :: T, [¢]) for any ¢ > ¢, and thus Win (p, T, [], ¢), from
I' =k ¢. We prove the claim per induction on I' =g A and only spell out an exemplary subset
of the cases. For a full proof, the reader may consult the accompanying mechanization (Wehr and
Kirst 2022b).

Ax: Then, Pt €T and Pfe€ A. The proponent thus first attacks the admission P, forcing
the opponent to demonstrate PS t”. With this, the proponent can now justify the defense
against the challenge against P 7 € A, leaving the opponent without any way of responding
and thus winning the dialogue.

LL: Then, L €. Then, the proponent can attack L, forcing the opponent to demonstrate L.
Then, a winning strategy exist by the principle of explosion.

L—: Then, ¢ = ¢y €', and we obtain inductive hypotheses for I' =k ¢, A and T, ¢y =k
A. The proponent thus attacks the admission ¢ = . The opponent has two ways of
responding to this attack:

- If the opponent defends against the attack by admitting i, then the proponent can win
by playing the strategy obtained from the inductive hypothesis on T, ¢ =k A.

- If the opponent counters, attacking the admission ¢ with some challenge ¢ > ¢ then the
proponent can win by playing the strategy obtained from the inductive hypothesis on
' =5k e, A

R—: Then, ¢ = ¢ € A, and we have an IH for I', ¢ =k ¥, A. The proponent thus defends
against the challenge on ¢ — v to which the opponent must respond with a challenge
¢ > . The proponent can thus win by playing according to the IH as ¢ has already been
admitted per our assumption.

LV: Then, V ¢ € ', and we have an IH for T, ¢[t] = A for some term t. The proponent thus
attacks Yo with Ay ¢ against which the opponent must defend with Dy ¢ t°. The state
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resulting from this is (t° - p, ¢ :: 14, 1C). However, the IH only yields a winning strategy
for the state (p, ¢[t] :: A, C). We can now apply Lemma 1 as t° - p,p : fA=p, p[t] 1 A
and t” - p, 1C = p, C to transform the winning strategy provided by the IH into the desired
form.

RV: Then, Vgﬂ € A, and we have an IH for 1" =k ¢, A. The proponent thus defends with
Dyw ¢ s for some s: S and the opponent responds with some challenge ¢ > ¢. This results
in the state (s- p, ¢ :: 1A, ¢ :: 1C) for which the IH directly provides a winning strategy. [

We continue by proving completeness. We first prove that material validity entails validity on
all classical, exploding models. This is extended to traditional completeness in Theorem 4 by use of
completeness for classical exploding models on the V, —, L -fragment (Theorem 1) and a negative
translation.

Lemma 2. ForanyT and ¢, T =P ¢ entails T £F ¢

Proof. Fix a classical, exploding structure S. We extend Tarski satisfaction to defenses via
pPEDsp:opEgp and pFDwes:os-pF@ and pFDpye:s pEg.

Furthermore, we define an auxiliary predicate I, \/ Z on contexts I, assignments p and sets
of defenses 2. I' £, \/ Z is the “Tarski-correspondent” of a winning strategy, as captured by (1)
below. Intuitively states that under the assignment p, I' entails the disjunction of all semantic
interpretations of 2. Two technical deviations from this intuition are required to carry out the
proof: First, to connect I' =, \/ Z to the notion of formula satisfaction p F «, the statement is rel-
ativized to formula consequences « of \/ 2. Second, to account for the context extensions induced
by Dy ¢ s, the notion is generalized to all finite extensionss - p of p.

FI:p\/@ & pFET > Vs:S,a.Vde Z.pFd— (s-p)Fa)— (5-p)Fa

The proof relies on the two intermediate results below, whose proofs are rather routine. We refer
the curious reader to the mechanization (Wehr and Kirst 2022b) or to Section 5 in which very
similar results are proven for Kripke material dialogues. (1) is proven by induction on the Win -

predicate and (2) is proven per case distinction on ¢. Here, S denotes the standard structure with
18 = I which is otherwise exactly the same as S.

(1) Win (p, T, C) in S entails T FoV (Ueec Zc)in S
(2) If(c:T)E, V(Z:UP)forallc>gpthenT E,\/ ({Dgp}U2Z)in S

Now assume I P ¢ and a classical, exploding S, p with p E I'. Per assumption Win (p, T, [], ¢)
in S meaning (¢::T') F, \/ Z. in S for all ¢ > ¢ by (1) and thus ", \/{D4¢} by (2). By picking
¢ as o, we then obtain p F ¢ in S as desired. O

Recall that the constructive completeness result for explodmg Tarski structures in Herbelin
and Ilik (2016), recalled in Theorem 1, is restricted to the V, =, 1 -fragment of first-order logic.
To conclude completeness for material dialogues on the full syntax of first-order logic, we thus
employ a negative translation which is given below:

Mo P =P (A= =M = M) (o v )M = M s M

(V)M .= M )M 1= = (V—pM) (o= )M =M — yM

Furthermore, a dialogical analogue of cut-admissibility is required to derive completeness on
the full syntax. A formula ¢ can be cut if for any S, p, I', T/, C with Win (o, T4 ¢ :: T, C) and
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Win (p, T4# I, C, ¢) we also have that Win (p, T4 I/, C). The proofs below rely on the congru-
ence principles Lemma 1. As we believe that spelling out all applications of the principle obscures
the simple ideas behind the proof, we opt to leave applications of Lemma 1 implicit where possi-
ble. Readers interested in the proofs in full detail may take a look at the Coq mechanization (Wehr
and Kirst 2022b).

The proofs of Lemma 3 and Theorem 3 in the following, as well as proofs in later sections
of this article, proceed per induction on strategies, i.e. derivations of the Win-predicate. In the
CIC, every inductively defined type admits an induction principle derived from the clauses of the
inductive definition. We shall give a presentation of the induction principle corresponding to the
Win-predicate. Fix a predicate P: (V — S) x Z(§) x £(A) — P, i.e. a function mapping states
to propositions. The induction principle is as follows:

(Vs.s~p s sm— (V5" s sm sy " — Wins” APs") - Ps) - Vs. Wins — Ps

That is, if for every state s and proponent move s ~~, s"; m such that after any opponent reaction
s';m~~, 5" there exists a winning strategy Wins” and Ps” is already known to holds, it can be
proven that P s holds, then P s holds for every winnable state. As an example, the proof of Lemma 3
is carried out as an induction using the following predicate.

P(p,I,C*):&VC,c,Con. C*=CHc::C = >1"¢p—
(Vd € 9. p justifies d — Win (d°(p, T, C4 C))) —
Win (p, T, C4 C')

Lemma 3. Let ¢ be such that all formulas of smaller complexity can be cut. Fix c> ¢ such that
Win (p, T, CH+ ¢ :: C') and for all d € D, justified under p we have Win (d°(p, T, C4 C')). Then,
Win (p, T, CH# C).

Proof. Intuitively, the proponent of Win(p,I,CH# C') mimics the proponent of
Win (p, ¥, C+c:: C') until the latter defends against c. In the critical cases D4 and Dy,
the admitted formula must be of lower complexity than ¢, for which a winning strategy may be
obtained by the assumed lower cut-elimination result.

Formally, we prove a slight generalization of the claim: Instead of just ¢ > ¢, we consider
any n and ¢ > (1" ¢) such that Win (o, I, C4¢:: C') and for all d € 2, justified under p we
have Win (d°(p, I', C4+ C')). The second subcase of the PA-case below illustrates why this gen-
eralization is necessary. We then proceed per induction on Win (p, ', C4+ ¢ :: C') and begin by
performing a case distinction on the proponent’s move in Win (p, I', C4# ¢ :: C').

PA: The proponent uses a > ¥ on v € I'. Then, the proponent of Win (p, I', C# C') copies
that move. There are two possible opponent responses.

- In the case of adma="6", the opponent may counter with some ¢’ > 6. Then, the
proponent copies the strategy obtained from the inductive hypothesis upon the same
counter.

- The opponent may defend with some d € Z,. Then, the proponent copies the strategy
obtained for the inductive hypothesis upon the same defense.

This case only becomes involved if the defense is some Dy ¥ s, meaning the result-
ing state becomes (s - p, ¥ :: 1T, 1C+ 1C’). To obtain a suitable winning strategy from
the inductive hypothesis P(s - p, ¥ :: 1T, 1C+ 1C’) as defined above, C and C’ must be
instantiated with 1C and 1C, respectively. Then, the parameters ¢ and #n must be instanti-
ated with fcand n + 1 for the premise on the second line of P(s - p, ¥ :: 1T, 1CH 1C') to
be provable. Once these instantiations have been made, the argument proceeds smoothly.
However, it is crucial that ¢ > ¢ is generalized to ¢I> 1" ¢. Other cases of this proof and
Theorem 3 require similar shifts from ct> 1" ¢ to f¢> 1 n 4 1o when Dyy-instances are
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encountered but we shall elide these to ease readability. The full details can be found in
the mechanization (Wehr and Kirst 2022b).
PD: Then thereisac’ € C4 ¢:: C' and the proponent defends with some d € &,. There are two
cases to distinguish:

¢’ € C4+ C': Then, the proponent of Win (p, I', C4 C’) copies the defense. If d is not Dy ¢ for
some ¢, then the opponent attacks the formula ¥ admitted by d with some a > .
The proponent then plays according to the strategy obtained from the inductive
hypothesis upon a t> .

¢’ = ¢: Per assumption we have Win (dO (p, T, C4 C')). Then, we perform a case distinc-
tion on the form of d.

d =Dy ¢ : Then, Win (d°(p, T", C4+ C')) = Win (p, T', CH C'), and we are done.

d=D4 v : The assumption thus is Win (p, ¥ :: I, C# C'). From the inductive hypothesis,
we obtain Win (p, ', C# C', ). As Do € 9, and c> (1" ¢) we know that
Y is of lower complexity than ¢, meaning it can be cut and we thus obtain
Win (p, T, C4 C').

d=Dw ¥ s: This case is analogous to that for d =Dy ¢ with a few more applications of
Lemma 1. ]

Theorem 3 (Cut-admissibility). All formulas can be cut.

Proof. The proof proceeds per induction on formula complexity. Thus, pick a ¢ such that all
formulas of lower complexity can be cut. We show that for all n,

Win (o, T4H# 1" ¢ =T/, C) = Win (o, T+ I/, C, 1" ¢) — Win (p, T4 I, C)

per induction on Win (p, T4# 4" ¢ :: T, C) which subsumes the fact that ¢ can be cut. We
perform a case distinction on the proponent move.

PA a Then, the proponent attacks some ¥ € T 1" ¢ :: I with a > ¢. We distinguish
two cases.

Y € T4 I'": Then, the proponent of Win (p, T4 I/, C) copies that attack and proceeds per
inductive hypothesis.

V¥ =1"¢: Then, Win (p, T4 I, C, 1" ¢) yields Win (o, T4 I",a:: C) and the inductive
hypothesis means that for all d € Z, we have that Win (d° (o, T+ I, C)). We may
thus apply Lemma 3 to deduce Win (p, T+ I'/, C).

PD v : Then, there is some ce C and some d € 2. which the proponent may per-
form.The proponent of Win (p, T4 I/, C) thus copies that defense and proceeds
per inductive hypothesis. O

Combining Theorem 3 with the negative translation above yields completeness on the full
syntax of first-order logic.

Theorem 4 Completeness. For any I" and ¢, T’ ED ¢ entails T = ¢.
Proof. Firstof all, ' =P ¢ entails '™ EP oM. This follows from the provability of ¢ <> ¢, sound-
ness (Theorem 2), and cut-admissibility for material dialogues (Theorem 3). We can now apply

Lemma 2 to obtain '™ Ef oM, which entails '™ =g o™ by Theorem 1. It is well known that this
entails I' =k ¢. O]
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Observe that Theorem 4 was developed fully constructively. This is noteworthy because similar
results often make use of unconstructive principles. For example, the naive method of extend-
ing completeness from the V, =, 1-fragment directly to the full syntax for classical, standard
Tarski models uses LEM (Forster et al. 2021). Moreover, it has been sown by Herbelin and Kirst
(2023) that the non-constructive principle WLEMS (Vp : N — P. =—=(Vn. —p n vV —=—p n), at the
intersection of weak excluded middle and double-negation is necessary, to obtain completeness
for full classical first-order logic. This should be taken as an indication that material dialogues are
exceptionally well-suited as a semantics for classical first-order logic in a constructive setting.

4. Intuitionistic Material Dialogues

One of the striking features of dialogue games is that classical dialogue semantics can often be
transformed into intuitionistic dialogue games by a simple change in the rules governing the inter-
actions between proponent and opponent (see e.g. Krabbe 2006; Lorenz 1961): The proponent
may only ever defend against the opponent’s most recent attack. This is an analogue to restricting
the right-hand formula set A of sequents I' = A to at most one formula to ‘transform’ classical
sequent calculi into intuitionistic ones. The adjusted version of the proponent move transition
relation ~, for the arising intuitionistic material dialogues is given below. Note that in this sec-
tion, in a slight abuse of notation, Win (p, A, C) and I" FP ¢ refer to dialogues played according
to these intuitionistic rules. Further note that the rule PA remains unchanged when compared to
classical material dialogues.

peEA ab g de 9. pjustifiesd

PA PD
(0, A, C)~p (0, A, C);PAa (ps A, c::C)~pdP (p, A, c:: C);move d

This version of intuitionistic material dialogues does not admit a constructive completeness
proof. To demonstrate this, we define the following fragment of first-order logic:

a,b:Az=1|PilaAblavb]| Ia p:x,i: 5’
008 n=alo AV loVyla>y| Vel g
2 is the fragment of first-order logic which allows attacking ‘blindly, i.e. the same attack pattern
can be used on these formulas in every winning strategy. The fragment 2( does not include a — b
as attacking it requires being able to defend a and V x.a as attacking it requires a (finite) choice of

5: 8. Unless specified otherwise, we are working in a fixed standard structure S. The results of this
section have not been mechanized.

Lemma4. Foranya:®A andany p, A, C with a € A one may assume p F a to deduce Win (p, A, C),
ie. (o Fa— Win(p, A, C)) = Win(p, A, C).

Proof. Per induction on the structure of a. Suppose p Fa entails Win (p,a:: A, C) we show
Win (p, a :: A, C). Where appropriate, we implicitly make use of the fact that Win (p, A, C) entails
Win (5 p, A, 1" C) wheres:S, [s|=nand 1" A C A’.

a=Pt: Then, the proponent attacks P, forcing the opponent to demonstrate p  P. The
proponent may then continue according to the assumption.
a= 1 : The proponent attacks 1 and wins.

a="b A c: The proponent starts by attacking b A ¢ with A} and Ag, leaving us to prove that
Win (p, b:: c:: A, C). Applying the IH for b and ¢ means we may assume p F b and
p E c to prove Win (p, b:: c:: A, C). As we thus know p F b A ¢, the proponent can
proceed per assumption.
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a=0bVc: The proponent attacks bV ¢, leaving Win(p,d::bVvc::A,C) for de{b,c}.
Applying the IH for d allows us to assume p F d, meaning the proponent can
continue per assumption in either case.

a= 3b: The proponent attacks b, leaving Win (s - p, b :: 1( 3b::A), 1C). Per IH on b we
may assume s - p = b and thus p = 3 b, continuing per assumption. O

Theorem 5. Pick ¢ : §2, then p E ¢ entails Win (p, A, C, ¢) for any A and C.

Proof. Proof per induction on ¢.

@ :20: We only handle ¢ = Piandgp =1 as the other cases are subsumed by other cases of
this proof. If p = L we are done. If ¢ = P, then the only possible challenge is Ap f to
which the proponent responds by demonstrating p = Pt.

@ =1 A6 : Then we know p F ¢ and p E . The possible challenges are A} and Ag, defending
against which leaves Win (p, A, Ax :: C, 0) for some & € {¢, }. Either case holds per
IH for &.

@ =% Vv 0 : Then, we know p F & for & € {¢y,0}. The proponent thus defends against A, by
admitting & and proceeds per IH for £.

¢ =a—> vy : Then, we know p F a entails p = . In attacking, the opponent will admit g, leav-
ing Win (p,a:: A, A, a :: C). We apply Lemma 4, allowing us to assume p F a to
prove Win (p,a:: A, A_, a :: C). The proponent thus defends by admitting v and
proceeds per IH on v as p F ¢ per assumption.

@ =V : Weknow thats- p E ¢ for any s:S. The challenge will be As ¥ for some s:S. The
proponent reacts by admitting ¥ (s), proceeding per IH.

@= 39y : Then, s- pE ¢ for some s:S. The only possible challenge is A3 to which the
proponent responds by admitting i with s as the witness, proceeding per IH. [

Theorem 5 can be made sense of in the following way: It is known that CIC is consistent with
various non-intuitionistic intermediate logics whose axiom schemes lie partially in F°, e.g. classi-
cal logic (a v = a) and Godel-Dummett logic LC ((a = b) v (b = a)) for a, b : 2. By Theorem 5, it
is thus consistent with CIC that these parts of the axiom schemes are dialogically valid according
to the rules investigated in this section. However, this means that completeness of these dialogues
with regard to some intuitionistic deduction system cannot be proven: If it could, that would mean
it was consistent that parts of these non-intuitionistic axiom schemata, e.g. P V = P, were provable
intuitionistically, which we know not to be the case.

Under the full law of the excluded middle, one can obtain an even stronger result: intuitionistic
and classical dialogical validity, as defined here, fully coincide. This result relies on the following
lemma:

Lemma 5. Assuming LEM, the following holds for any ¢ in any standard S

(1) Vp,A,C.9 € A— pE =@ — Win(p, A, C)
(2) Yp,A,C. pE @ — Win(p, A, C, @)

Proof. We show prove both claims per simultaneous induction on ¢. For most cases, 2. is the same
as in Theorem 5 in which case we omit it. We write IHi for the inductive hypothesis for part i of
Lemma 5.
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@=Pt: (1) The proponent may force the opponent to demonstrate p = P t by attacking
P e A, contradicting p = —P7.

@=1: (1) The proponent may win by attacking 1 € A.

=% —=>0: (1) Suppose pF S (¥ = 0), meaning p Fy and pF 6. The proponent then
attacks ¥ = 0 € A. If the opponent counters the attack, the proponent can
win by playing the strategy obtained by IH2 on p F . If the opponent admits
6, then the proponent plays according to IH1 on p = — 6.
(2) Suppose p F v — 6. The opponent attacks ¥ — 6 with A_, ¥ 6, admitting
. By the law of the excluded middle, either p = ¢ or p F — 1. In the latter
case, the proponent can now proceed per IH2 on p = — . In the former case,
we have p F 0 per assumption and the proponent can proceed by admitting 6
and playing along IH1 on p F 6.

o=v% A0: (1) SupposepFE = (¢ AB), meaning p F =1 or pE—0. The proponent attacks
the side of the contradicted formula of 1 A 6 € A and proceeds per IH1.

@=vVv6: (1) SupposepE — (i V0), meaning p F —  and p E — 6. By attacking ¥ V 6 €
A, the proponent thus forces the opponent to admit either clause, being able
to proceed via IH1 in either case.

p=Vy: (1) IfpkE —- V ¢ that means there is an s : S with s - p E = 1. The proponent thus
attack V ¢ with A, ¢ and proceeds per THI.

Q= Jy: (1) Suppose p F = 3y, meaning s- p F = for any s:S. Then the proponent
attacks 3 € A and proceeds per IHI. O

Theorem 6. Under LEM, classical and intuitionistic dialogical validity agree.
Proof.

<—: This is the case — even without the law of excluded middle - as every intuitionistic winning
strategy is also a classical winning strategy on the same state.

—: Suppose I' P ¢ classically. By Lemma 2 this means I' =F ¢. As every standard structure is
exploding and under the LEM every structure is classical, this means ¢ is valid under I" in
every standard structure. By Lemma 5 this entails that I" EP ¢ intuitionistically. 0

Note that the failure of completeness is not simply due to the ‘wrong choice of rules’ for intu-
itionistic dialogues. While there are examples of the proponent restriction failing to turn classical
dialogues intuitionistic (see e.g. Wolff 2022), we do not believe this to be the case in this instance.
Formal dialogues for intuitionistic first-order logic, which are obtained from their classical coun-
terparts via that very restriction, are constructively sound and complete (Felscher 1985; Forster
et al. 2020; Lorenz 1961). Rather, we believe the cause of failure lies in the difference between
formal and material dialogues: their treatment of atomic formulas.

5. Kripke Material Dialogues

In the previous section, we demonstrated that intuitionistic material dialogues fail to capture intu-
itionistic first-order logic. Classical material dialogues can be seen as classical dialogues played on
the canonical notion of model for classical first-order logic: Tarski models. In that vein, we present
intuitionistic dialogues played on Kripke models as a semantics for intuitionistic first-order logic.

While these stray far from the ideas of Lorenzen, they admit a constructive completeness proof
restricted to the ¥, >, 1 -fragment.
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A Kripke material dialogue is played on a Kripke structure (K, <,S_, ). The game states of
Kripke material dialogues are dependent pairs (k, ,ok,A, C):Zk:K, (N— S§) x Z(F) x Z(A)
representing material dialogue states ‘at a world k in K. Mirroring the clauses of I for — and V,
opponent attacks in Kripke dialogues may ‘move’ the game state along < in K. To express this,
we define a predicate a | k— k' with A_, ¢ ¥ | k+—> k' and A ¢ | k— k' hold whenever k < k’ and
a | k— kholds for all other attacks a. The definitions of valid moves and their effects on the game
state are largely analogous to intuitionistic material dialogues. In a slight abuse of notation, we use
the same notation for describing dialogues as in Sections 3 and 4 to denote concepts relating to
Kripke material dialogues. Note that the definitions of d” and d© are essentially the same as for
the previous material dialogues, leaving the world unchanged.

€A > de 9, justifies d
PA 14 a9 PD c P

(k, p, A, C) ~p (k, p*, A,C) s PAa (k, p; A, c:: C) ~p dF (k, p, A, c:: C) s move d

c>@ clkK

0A :
(k, 0, A, C) s PD ¢ ~o (K, p*, 9 11 A, c1: )

a>¢ adma="y7 c>¢¥ clk—K ob de 9, pjustifiesd
(k, 0, A, C); PAa~s, (K, p¥,c:i A, c:: C) (k, p, A, C) ; PA a~+, d° (k, p, A, C)

The definition of Win (k, p, A, C) remains unchanged. To account for attacks ‘moving’ the state
along k < k', Win (k, p, A, C, ¢) now is a shorthand for the statement that Win (k’, p,a:: A,a:: C)
for any a > ¢ with a | k+— k' . We then define I" P ¢ the same as before.

The results of this section have not been mechanized. We first prove that Kripke material dia-
logues are sound with regard to the intuitionistic sequent calculus I" = § given in Section 2.2.
Note that this proof of soundness requires a similar notion of congruences as the Lemma 1 used
in proving soundness of classical material dialogues.

Lemma 6. Suppose Win (k, p, A, C) and p,A=p’, A" and p,C=p’,C for some p’, A’ and C'.
Then Win (k, o', A, C').

Theorem 7 (Soundness). Suppose I' = & then T' EP 8.

Proof. It suffices to prove that I' = § entails Vk, p, C. Win (k, p, T, §) for all exploding Kripke
structures. We proceed per induction on I' =>j §. We only treat a few exemplary cases.

Ax: The only possible challenge is Apt. Then, the proponent attacks the Pt € T, forcing
the opponent to demonstrate P¥”. Then, the proponent can defend against Ap ¢ by
demonstrating the same fact, thereby winning the dialogue.

L_L: The proponent attacks 1 € T, forcing the proponent to demonstrate L. The existence of a
winning strategy then follows from the principle of explosion.

L—: The proponent thus attacks ¢ — i € I'. If the opponent counters, the proponent plays
according to the IH on I = ¢. If the opponent defends, the proponent plays according to
thelHon T, ¥ =7 4.

R—>: Then, the challenge is A_, ¢ ¥, leaving us to prove Win (K, p,¢ : T, A_, ¢ ¢ :: C) for
some k<k'. As ¢ ¢ ::T Cg:: T, the proponent may defend and continue playing
according to the weakened inductive hypothesis.

LV: The proponent attacks V ¢ € I' choosing t” : Sy as the witness. Once the opponent defends,
the game state is Win (k, t” - p, ¢ :: 1", N(c :: C)). By applying Lemma 6, the proponent
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may continue to play according to the IH as p, ¢[t] : T =t°-p,¢:: 1T and p,c:: C=

tP - p, Mc:: O).
RV: Then, the challenge is As ¢ for some s: Sy and A ¢ | k+—> k'. The proponent can then
defend and continue playing according to the IH on 1" = ¢. 0

Completeness is also proven with a strategy analogous to that for classical material dialogues in
Section 3. We first prove that Kripke dialogical validity entails exploding Kripke validity. We then
use a prior result from Herbelin and Lee (2009) to deduce completeness for the V, —, | -fragment.

We extend the forcing relation to defenses as follows

kaI—DAgo:<:> ,OkH—(p pk||—DW(ps:<:> s~,ok||—qo ,okII—DM<p:<:> ,OkH—(o

and define an auxiliary predicate on contexts I', k-environments p and challenges ¢
T\ Zc i Vhk<K,5:Sp, 0.0 IFT - (Yd€ Ze. p¥ IFd =5 pF IFa) > 5 pF Ik o

r II—’; \/ 2. should be read as I" semantically entailing the disjunction of the semantic interpreta-
tions of defenses against ¢ under the k-environment p.

Lemma 7. If for some ¢ we have (c::T") Il—l; \/ 2 for all ct> @, then ok IF T entails pk IF .

Proof. Assume (x) Ve> ¢. (c:: T") HJ;) \ 2. and pXIFT. We proceed per case distinction on ¢.

@ = 1 : Follows from (x) withc=A4 .
@ =Pt: Follows from (x) withc=Ap t.

¢ =1 > 0: Letk <k’ and suppose oF I+ Y. As this means oF IF v, oF I 6 follows from (%)
withc=A_, ¥ 0.

@ =1 A0 : Apply (») with A7 ¥ and AR 6 to obtain p* IF v and p* IF 6, yielding p* I- v A 6.

@ =1\ 0: Apply (») with A, ¥ 6. This leaves us proving that p¥ I- v and p* I- 6 each entail
P Ik ¥ v 6, which is clear.

@=V: Let k<K and s: Sy, we need to prove that s- p¥ I 4. For this, we apply (x) with

As¥ andS=s.
0= =R Apply (x) with A3 . This leaves us proving that for s: §, s- oK IF 4y entails p* IF
34, which is clear. O

Recall that for any structure S, we denote by S the standard structure with 15 = | which is
otherwise exactly the same as S.

Lemma 8. Let (K, <,S_, ) be exploding. Suppose Win (k, p, I", ¢ :: C) over (K, <, S_,i) thenT IF];
\ D over (K, <,S5_,1).

Proof. We proceed per induction on Win (k, p, T, ¢ :: C). Fix k <k, 3: Sy and suppose p¥ IF T
and furthermore that ,ok/ I d entails s - ,ok/ IF o for all d € Z.. We perform a case distinction on
the proponent’s move.

PA : The proponent attacks some ¢ € I'. We perform a case distinction on ¢.

@=1: Then, p* I+ L per assumption and thus p¥ I « as the structure is exploding.
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¢ =Pt: Apply the IH for the opponent defending by demonstrating o¥ I P, which holds
per assumption.

@ =¥ — 6 : First apply Lemma 7 to the IH upon the opponent countering to obtain oF Ik . We
can then apply the IH obtained upon the opponent admitting € as oK Ik T,

@ =v A0: To apply the IH, either pKIE ¥ or pXIF6 must be shown, depending on the
proponents attack. Both hold as p* |-y A 6 per assumption.

p=vYV0O:As ok I ¥ V 0 per assumption, either ok I ¥ or 0¥ IF 6. In either case, we can
apply the IH upon the opponent admitting the respective formula.

¢=V: The proponent chooses some s: Sg. As pk/ I V¢ we have s- pk/ IF 4. Denote by
1; a the renaming of « in which every strictly index less than [s| remains the same
and any other index is increased by one. By applying the IH upon the opponent

admitting this, we can then obtain’s - s - pk, IF15 @ which is equivalent to s - ,ok/ Ik
by design of the 15-operation.

@ =3y : As p¥ I 34 there must be some s: Sy such that s- p¥ I . By applying the IH
upon the opponent admitting this, we can then obtain s - s - oF IF1s meaning s -
k/
p* Ik a.

PD: The proponent defends against ¢ via some d € Z,. We conclude s - o¥ IF a from the
assumption by showing p¥ I+ d. If d = Py; ¢ then p¥ I ¢ and thus p¥ I ¢ must hold
for the proponent move to have been legal. In the other two cases, an application of

Lemma 7 to the IH yields p* It d. O
Lemma9. Forany T and ¢, T =P ¢ entails T l=£ Q.

Proof. Assume I ED ¢ and fix an exploding Kripke structure (K, <,S_,t), a world k: K and an
environment pF such that pFIF . As [ EP @, we know that Win (o5, 1,10, @) in (K, <,S8_,1).
Then by Lemma 8 we know ¢ :: " IF’;,( Z.in (K, <,S_, 1) for every c > ¢. With Lemma 7 we may

thus conclude p* IF ¢ as desired. O]
Theorem 8 (Completeness). When restricting to the ¥ , <>, 1-fragment, T EP @ entails T = ¢.

Proof. By Lemma 9, we know I' F£ . Herbelin and Lee (2009) prove that this entails ' =; ¢. [

Similarly to the case of classical first-order logic at the end of Section 3, it is a current subject of
investigation which non-constructive principles are needed to extend the completeness result for
the intuitionistic case to the full syntax. Concretely, we expect that the aforementioned principle
WLEMS is necessary in any case and possibly even sufficient.

6. Discussion

Mechanization of active research While researching for this article, we mechanized the results
from Section 3 in the interactive theorem prover Coq. The mechanization can be found at Wehr
and Kirst (2022b). Mechanizing the results of Section 3 revealed some mistakes concerning
the binding structure in our initial definition of the rules for material dialogues which, albeit
being minor, invalidated both soundness and completeness. We missed these mistakes while
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working ‘on paper’ and believe it would have taken much longer to discover them without the
mechanization. Having machine checked the definitions in Section 3 gave us sufficient confidence
in the correctness of the technical details of material dialogues to work solely on paper for the
remainder of the article.

It should also be noted that the mechanization took up only about a quarter of the overall
time spent researching for this project, in large part due to building on top of the a large pre-
existing mechanization from Forster et al. (2021). Notably, this mechanization already included
mechanizations of the results from Herbelin and Ilik (2016), Herbelin and Lee (2009). We believe
this might be a worthwhile trade-off between the time requirement of a full mechanization of all
results and the room for error in working solely on paper. To this end, a library aimed at easing
the mechanization of results concerning first-order logic in Coq has since been prepared by Kirst
etal. (2022).

Proof strategies for Completeness We prove completeness by relating dialogical validity to valid-
ity in a model-theoretic semantics and appealing to a preexisting completeness result. This is
the quickest way to obtain completeness in the framework set up by Forster et al. (2021). For
classical material dialogues, we believe it would also be possible to obtain a direct constructive
completeness proof with regard to natural deduction on the basis of a Henkin construction.

Benefits of Material Dialogues When working with Tarski semantics in CIC, one’s attention needs
to be restricted to classical structures (as defined in Section 2). Many structures of interest such as
the standard model of Peano arithmetic is not provably classical in constructive settings and can
thus not be studied in a Tarski setting. In contrast, Section 3 demonstrates that classical material
dialogues embody classical logic regardless of the classicality of the underlying structure. It thus
seems like a promising basis on which to carry out model-theoretic investigations of classical first-
order logic in constructive settings. However, we have not yet investigated these possibilities more
deeply.

Faithfulness to Lorenzen’s material dialogues We attempted to be as faithful to Lorenzen’s defini-
tions from Lorenzen (1960, 1961) as possible while implementing material dialogues played over
first-order structures. Arguably, this second aspect already is in conflict with Lorenzen’s ideas as
he placed a lot of value in the ‘underlying game’ for settling atomic propositions to be of a discrete
nature, something completely lost in our formulation. However, all the attacks and defenses for
the connectives of first-order logic are exactly as they are in Lorenzen’s work. Notably, our usage of
a structure defined, standard constant 1S is very similar to Lorenzen’s definitions which propose
to fix some unwinnable game as a stand-in for a ‘demonstration’ of 1. Because of the addition of
the Kripke frame and allowing opponent attacks to ‘move’ the game state along it, Kripke material
dialogues stray very far from what is described by Lorenzen (1960, 1961).

Classical Kripke Dialogues The analysis of Kripke dialogues for intuitionistic first-order logic
raises the question of how Kripke dialogues played according to classical rules would behave.
While we chose not to pursue this question further, we believe that Kripke dialogues with classi-
cal rules should behave similarly to the classical material dialogues of Section 3. Concretely, we
believe their validity entails classical exploding Tarski validity because every classical exploding
Tarski structure can also be viewed as an equivalent one-world Kripke structure. The more crit-
ical property is soundness: We believe that the ‘independence of the classicality of the structure’
already demonstrated by the soundness proof for classical material dialogues should extend to
even work on Kripke structures.
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