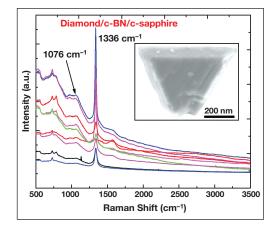
Nano Focus

Hexagonal BN converted directly to cubic BN through a new phase

Often outshined by diamond, cubic boron nitride (c-BN) is nevertheless an impressive material. In a handful of important ways, c-BN even has an edge: a wider bandgap, more resistance to oxidation due to a passivating layer of durable boron oxide, and acceptance of both *p*- and *n*-type dopants, compared with diamond's acceptance of only *p*-type. The promise of exploiting these properties in future electronics makes clear the need for robust processing of BN.


Researchers at North Carolina State University have developed a method of fabricating phase-pure c-BN at ambient temperature and pressure in air-via a new phase of BN (named Q-BN) with its own exciting properties. Jagdish (Jay) Narayan led a team that extended previous, similar work on carbon into the BN material system. Narayan had a hypothesis that he could tweak the phase-changing behavior of carbon to directly convert graphite to diamond, bypassing the thermodynamic barrier by taking a "scenic route" through kinetics. Then, because carbon and BN are material cousins, he thought he could do the same for converting hexagonal BN (h-BN) to c-BN. This work is published in a recent issue

of the *Journal of Applied Physics* (doi:10.1063/1.4948688).

With a 20-ns pulsed laser, liquid BN was undercooled by more than 700 K. Upon quenching, Narayan and his team observed a new phase, which they named, appropriately, Q-BN. The critical parameter in this process, in order to kinetically drive the transformation, is time: "We do it so rapidly the system is not able to equilibrate," says Narayan.

The team found that an intermediate undercooling of liquid h-BN resulted in c-BN directly, while a deeper undercooling re-

sulted in the new Q-BN phase. By varying process parameters, the team was also able to nucleate and grow c-BN nanocrystallites in Q-BN. Upon further exploration, the team found they could grow c-BN thin films and nanoscale dots and needles, control twinning defects in c-BN, grow epitaxial diamond/c-BN and c-BN/diamond heterostructures, and give the Q-BN a semiconductor character, thereby opening up an even wider range of manufacturing possibilities for the process. Graduate student Anagh Bhaumik and postdoctoral research associate Weizong Xu carried out the characterization of the Q-BN phase, including Raman spectroscopy, HRTEM and EELS. Among other things, they

Raman spectra from diamond/c-BN single-crystal films.

determined that Q-BN's atomic density is higher than that of c-BN, which suggests increased hardness. Because Q-BN is isostructural to Q-carbon, Narayan expects a hardness greater than that of diamond—comparable to the 17% greater hardness of Q-carbon over diamond that he reported previously.

The next step is to dope the materials, create a *p-n* junction, and start moving toward more complex devices. "The beauty of this [process]," says Narayan, "is that you can deposit these diamond/c-BN layers on heat-sensitive substrates, like polymers," which would then lead to uses in flexible electronics and other advanced devices.

Antonio Cruz

Bio Focus

Ionic liquid gels enable wearable bioelectronics sensors

.....

The age of wearable electronics is here. With devices that can count our steps and track our heartbeat, scientists and engineers have devised increasingly creative, convenient, and even fashionable ways to monitor human health in real time. Despite their convenience, many of these devices may never be as accurate as the bulky transdermal electrodes and instruments used in medical practice—at least not in their current form. A team of researchers in France have developed a way to fabricate small bioelectronic sensors that are both highly sensitive and comfortable to wear and that could one day even help rehabilitate injured muscles.

A major problem faced by the bioelectronics industry, especially for sensors, is fundamentally a materials science issue: poor contact between dissimilar surfaces. How can soft, wet tissue be interfaced with dry, solid-state electronics to detect biosignals and transmit vital data?

In clinics and medical laboratories throughout the world, this problem is alleviated to some extent by spreading conducting pastes or gels on transdermal electrodes before attaching them to the skin. This helps improve adhesion and electrical conduction at first, but the stability of these electrodes tends to decrease over time as sweat builds up, seriously degrading the performance of the electrodes and devices. Most sensors of this type are therefore not well suited for continuous use.

Researchers have begun to develop bioelectronic sensors that incorporate conducting polymers. Water-soluble polymers of this type such as poly(3,4-ethylenedioxythiophene), or PEDOT, can be made compatible with human tissue while maintaining sufficient conductivity for monitoring. And because the flexibility of these polymers is limited only by the substrate on which they are coated, what better substrate to use for a wearable sensor than clothes?

That is the type of reasoning that led Esma Ismailova, a research engineer at École Nationale Supérieure des Mines de Saint-Étienne, and her team