
J. Appl. Prob. 44, 393–408 (2007)
Printed in England

© Applied Probability Trust 2007

INTEGRATED FRACTIONAL WHITE NOISE AS
AN ALTERNATIVE TO MULTIFRACTIONAL
BROWNIAN MOTION

ALLAN SLY,∗ University of California

Abstract

Multifractional Brownian motion is a Gaussian process which has changing scaling
properties generated by varying the local Hölder exponent. We show that multifractional
Brownian motion is very sensitive to changes in the selected Hölder exponent and has
extreme changes in magnitude. We suggest an alternative stochastic process, called
integrated fractional white noise, which retains the important local properties but avoids
the undesirable oscillations in magnitude. We also show how the Hölder exponent can
be estimated locally from discrete data in this model.
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1. Introduction. Problems with the multifractional Brownian motion formulation

Motivation for work on processes with nonconstant scaling comes from the growing evidence
for multiscaling/multifractal properties in applications. The general ideas were pioneered by
Mandelbrot in a series of books and papers dating from the 1960s and now there are diverse
applications from areas such as risky asset returns (see, e.g. [11] and [7]), fluid turbulence (see,
e.g. [14]), geomagnetic time series (see, e.g. [1] and [16] and references therein), phylogenetic
trees and genome sequencing (see, e.g. [17]), and telecommunications modelling (see, e.g.
[12]).

Multifractal models are generally not tractable beyond the descriptive level, but scaling
functions are commonly piecewise linear, indeed often bilinear. This offers the possibility of
modelling with a small number of scales, possibly just two. If the underlying distribution can
be treated as Gaussian then considerable explicit behavioural information can potentially be
obtained.

Multifractional Brownian motion (MBM) was developed in order to model processes where
the local roughness varies. The roughness is a local scaling property which is measured by the
local Hölder exponent (see (2.6)). MBM was introduced by Peltier and Lévy Véhel [13], based
on the integral moving average representation of fractional Brownian motion

MH (t) = 1

�(H(t) + 1
2 )

∫ t

−∞
(t − u)H(t)−1/2W(du) −

∫ 0

−∞
(−u)H(t)−1/2W(du),

where W is a Wiener measure and H(t) is the local Hurst parameter. A common variation, the
harmonizable integral representation version of MBM, which Stoev and Taqqu [15] showed is
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Figure 1: Multifractional Brownian motion with H(t) = 1
2 + 1

4 cos(πt/2).

a different process, is given by

MH (t) = Re
∫

R

eiξ t − 1

|ξ |H(t)+1/2
W̃ (dξ),

where W̃ = W1 + iW2 and W1 and W2 are independent Wiener processes. Our process will be
based on the harmonizable representation. When H(t) is constant, MBM is simply fractional
Brownian motion. Both of these definitions can be written MH (t) := BH(t)(t), where BH (t)

is a family of fractional Brownian motions which is continuous in both t and H . While there
is only one fractional Brownian motion for each H , Stoev and Taqqu [15] showed that there is
a large class of families of MBMs with nontrivially different covariance structures.

The definition of MBM allows the Hölder exponent to be specified at each point in time,
meaning that the Hölder exponent of MH (t) is H(t) almost surely. The processes are also
locally asymptotically self-similar. A process is locally asymptotically self-similar at t with
parameter H if

MH (t + sh) − MH (t)

hH

d−→ V (s),

where V (s) is the self-similar tangent process. The tangent process for MBM is fractional
Brownian motion. Variations on MBM have been proposed in order to expand the class of
functions H(t) on which it can be defined (see, e.g. [2] and [5]).

When MBM has a nonconstant H(t), it follows from the local self-similarity property that
it does not have stationary increments. This is unavoidable, as varying roughness implies that
the distribution of increments varies in time. However, the increment MH (t + s) − MH (t)

depends not just on H(t) and H(t + s) but also on t itself. Regardless of the family of fraction
Brownian motions used, by the triangle inequality

E(MH (t + s) − MH (t))2 ≥ ((t + s)H(t+s) − tH )2

https://doi.org/10.1239/jap/1183667409 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1183667409


Integrated fractional white noise 395

and, as such, when t is large with s fixed, small changes in H(t) lead to very large increments.
For example, if t = 100 and H(t) = H(t + 1) = 0.75, then E(MH (t + 1) − MH (t))2 = 1,
but if instead H(t + 1) = 0.8, then E(MH (t + 1) − MH (t))2 > 63. If t = 1000 then
E(MH (t + 1)−MH (t))2 > 5411. Figure 1 shows a typical sample path of MBM with H(t) =
1
2 + 1

4 cos(πt/2). All the figures in this paper were simulated using a simple discretization of
the stochastic integral. As t increases the difference between B0.75(t) and B0.25(t) increases
and the magnitude of the oscillations increases accordingly. While the purpose of MBM is to
vary the local fractal properties, unnecessary fluctuations and oscillations are introduced into
the process.

In this paper we introduce a new class of Gaussian processes, called integrated fractional
white noise, which avoids these problems while retaining the essential Hölder exponent and
local asymptotic self-similarity properties of MBM. The variances of the increments MH (t +s)

−MH (t) depend only on s and the values taken by H between t and t + s, and not on t itself.
This avoids the sudden swings in magnitude and wild oscillations associated with changing
values of the Hurst parameter. Retaining the essential features of MBM while more plausible
trajectories makes integrated fractional white noise a more reasonable model.

In Section 2 we define the process and establish its key properties. In Section 3 it is shown
to be identifiable by constructing a strongly consistent estimator of the process. This is a
significant improvement over earlier estimators of MBM. Using a spectral decomposition we
establish the asymptotic normality of the estimator under mild conditions. Some proofs are
postponed to Section 4.

2. Integrated fractional white noise

To motivate the definition of integrated fractional white noise, we will break MBM into two
parts. While MBM is obviously not differentiable, it can be differentiated as a stochastic process
in the space of stochastic distributions. Assuming that H(t) is continuously differentiable,

d

dt
MH (t) = H ′(t) ∂

∂H
BH (t) + WH (t),

where WH (t) is fractional white noise, the derivative of fractional Brownian motion in the space
of stochastic distributions, as in [9]. Unlike fractional white noise, the term (∂/∂H)BH (t) is a
Gaussian random variable with variance bounded on compacts. It becomes very large when t

is large, since the difference between BH1(t) and BH2(t) becomes very large. Then

M
(f )
H (t) :=

∫ t

0
H ′(s) ∂

∂H
BH (s) ds

=
∫ t

0
H ′(s) Re

∫
R

ln(|ξ |)(eiξ t − 1)

|ξ |H(t)+1/2
W̃ (dξ) ds

is a Gaussian finite variation process with locally Lipschitz paths. It follows that MH (t) −
M

(f )
H (t) is also locally asymptotically self-similar and has local Hölder function H(t), and we

take the following as our definition.

Definition 2.1. (Integrated fractional white noise.) For 0 < H(t) < 1 and H(t) continuous,
we define integrated fractional white noise as

YH (t) = Re
∫

R

∫ t

0

iξeiξs

|ξ |H(s)+1/2
dsW̃ (dξ), (2.1)

given that the integrand is in L2(R).
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This definition is equivalent to

YH (t) =
∫ t

0
WH(s)(s) ds; (2.2)

see Appendix A for proof. When H(t) is less than 1
2 this stochastic distribution may not be in

L2 and greater regularity of H(t) must therefore be assumed.

Theorem 2.1. Suppose that H(t) is continuous and that 0 < a ≤ H(t) ≤ b < 1. Assume that
there exist some β, C1 > 0 such that

β + a > 1
2 (2.3)

and
|H(t) − H(s)| ≤ C1|t − s|β. (2.4)

Then YH (t) ∈ L2 with

E YH (t)2 =
∫ t

0
A(H(s))H(s)s2H(s)−1 ds +

∫ t

0
A(H(s))H(s)(t − s)2H(s)−1 ds

+ 1

4

∫ t

0

∫ t

0
fH (x, y) dx dy

< ∞, (2.5)

where

A(H) =
∫

R

∣∣∣∣
∫ 1

0

iξeiξs

|ξ |H+1/2 ds

∣∣∣∣
2

dξ = π

H�(2H) sin(Hπ)

and

fH (x, y) = 2A

(
H(x, y)

2

)
H(x, y)(H(x, y) − 1)|x − y|H(x,y)−2

− A(H(x))2H(x)(2H(x) − 1)|x − y|2H(x)−2

− A(H(y))2H(y)(2H(y) − 1)|x − y|2H(y)−2

with H(x, y) = H(x)+H(y). The process shares the relevant important local properties with
multifractional Brownian motion: YH (t) is locally asymptotically self-similar, since

h−H(t0)(YH (t0 + th) − YH (t0))
d−→ A(H(t0))

1/2BH(t0)(t)

as h → 0, where convergence is in finite-dimensional distributions and the tangent process
BH(t0)(t) is fractional Brownian motion with parameter H(t0); and, with probability 1, YH (t)

has continuous paths with Hölder exponent H(t) at t , that is,

sup
{
γ : lim

h→0
|h|−γ |YH (t + h) − YH (t)| = 0

}
= H(t). (2.6)

See Appendix A for proof of Theorem 2.1.
Figure 2 shows a typical sample path of YH (t) with H(t) = 1

2 + 1
4 cos(πt/2). It exhibits

areas of high and low roughness because of the varying local Hurst parameter, but there are no
extremely large increments or wild oscillations like those in Figure 1. The difference is that
the distribution of the increments of integrated fractional white noise depends only on the local

https://doi.org/10.1239/jap/1183667409 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1183667409


Integrated fractional white noise 397

−15

−10

−5

0

0 20 40 60 80

Figure 2: YH (t) with H(t) = 1
2 + 1

10 cos(5πt).
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Figure 3: YH (t) with discontinuous H(t).

values of H(t) and not on its position in time, in the following sense: if H1(t) = H2(t + u) for
all t ∈ [a, b], then

{YH1(a + t) − YH1(a)}t∈[0,b−a]
d= {YH2(a + u + t) − YH2(a + u)}t∈[0,b−a] (2.7)

in the sense of finite-dimensional distributions. As a result, the variance of the increments can
be calculated using (2.7). This property of (2.5) is also important for the generalization when
H(t) is random. Suppose that H(t) is a stationary process whose paths satisfy conditions (2.3)
and (2.4). Then it follows that YH (t) has stationary increments.
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The definition of YH (t) also naturally extends to piecewise-continuous functions. Unlike
for MBM, this does not lead to discontinuities. Figure 3 shows a typical sample path of YH (t)

with

H(t) =
⎧⎨
⎩

1
4 , t ≤ 10,

3
4 , t > 10.

Throughout the rest of this paper we will assume that H(t) satisfies conditions (2.3) and
(2.4).

3. Identification of H(t)

For processes like fractional Brownian motion where the Hölder exponent is constant, it can
be estimated by examining either local or long-range properties. For every type of MBM, the
Hölder exponent is a truly local property and must be estimated as such. The estimator used
most frequently in the MBM literature (see, e.g. [2], [3], and [6]) is

ĤN(t) = 1

2

(
1 − γ − ln VN(t)

ln N

)
,

where 0 < γ < 1 and

VN(t) =
�N1−γ 	∑

j=−�N1−γ 	

(
YH

(
t + j + 1

N

)
− 2YH

(
t + j

N

)
+ YH

(
t + j − 1

N

))2

.

While this estimator is strongly consistent, it does not converge very quickly. Heuristically
E VN(t) ≈ C(t)N1−γ−2H , so

ln VN(t)

ln N
≈ ln C(t)

ln N
+ 1 − γ − 2H.

For εn = ĤN(t)−H(t)+ ln C(t)/(2 ln N), if (1 −γ )(4H(t)− 3)− 4β < 0 then cN(1−γ )/2εn

converges in distribution to N(0, 1), by a modification of the proof of Theorem 3.2 (see below).
However, the term ln C(t)/(2 ln N) depends on H(t) and decays very slowly to 0, making
ĤN(t) a very inefficient estimator of H(t). We can prove better rate-of-convergence results for
the estimator

H̆N(t) = 1

2

(
log2

1 + 2�N1−γ 	
1 + 2�(N/2)1−γ 	 + log2

VN/2(t)

VN(t)

)
.

This estimator was used in [4], albeit for a different process. We will prove consistency and a
central limit theorem for this estimator, but first some lemmas are required.

Lemma 3.1. Let Xj = YH (t + j/N) − YH (t + (j − 1)/N). Then there exist constants
C3, C4, C5, C6 > 0 such that, for all N > 1 and i and j with −�N1−γ 	 ≤ i, j ≤ �N1−γ 	,

| E(Xi+1 − Xi)
2 − (4 − 4H(t))A(H(t))N−2H(t)| ≤ C3 ln(N)N−2H(t)−γβ . (3.1)

Furthermore,

| E(Xi+1 − Xi)(Xj+1 − Xj) − 1
2 (−|i − j + 2|2H(t) + 4|i − j + 1|2H(t)

− 6|i − j |2H(t) + 4|i − j − 1|2H(t) − |i − j − 2|2H(t))A(H(t))N−2H(t)|
≤ C4|i − j |2H(t)−2 ln(N)2N−2H(t)−2β + C5|i − j |2H(t)−3 ln(N)2N−2H(t)−γβ . (3.2)
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Also,
1
2A(H(t))|−|i − j + 2|2H(t) + 4|i − j + 1|2H(t) − 6|i − j |2H(t)

+ 4|i − j − 1|2H(t) − |i − j − 2|2H(t)|
≤ C6|i − j |2H(t)−4.

See Appendix A for a proof of Lemma 3.1.

Corollary 3.1. There exist constants C7, C8 > 0 such that, for all N ,

C7N
1−γ−2H(t) ≤ E VN(t) ≤ C8N

1−γ−2H(t).

Lemma 3.2. There exists a constant C9 > 0 such that, for all N > 1,

E(VN(t) − E VN(t))2 ≤ C9N
1−γ−4H(t)

for (1 − γ )(4H(t) − 3) − 4β < 0 and

E(VN(t) − E VN(t))2 ≤ C9 ln(N)4N1−γ−4H(t)+(1−γ )(4H(t)−3)−4β (3.3)

otherwise.

Proof. By Theorem 3.9 of [10],

var VN(t) = 2
�N1−γ 	∑

i=−�N1−γ 	

�N1−γ 	∑
j=−�N1−γ 	

(E(Xi+1 − Xi)(Xj+1 − Xj))
2.

If (1 − γ )(4H(t) − 3) − 4β < 0 then, by Lemma 3.1,

�N1−γ 	+1∑
j=−�N1−γ 	

(E(Xi+1 − Xi)(Xj+1 − Xj))
2

≤ (4 − 4−H )2A(H(t))2N−4H(t) + C2
3 ln(N)2N−4H(t)−2γβ

+ 12N−4H(t)

�N1−γ 	∑
j=1

C4|i − j |4H(t)−4 ln(N)4N−2H(t)−4β

+ C5|i − j |4H(t)−6 ln(N)4N−2γβ + C6|i − j |4H(t)−8

≤ c1N
−4H(t)

and, so,

E(VN(t) − E VN(t))2 ≤ 2
�N1−γ 	+1∑
i=−�N1−γ 	

c1N
−4H(t) ≤ C9N

1−γ−4H(t).

Equation (3.3) follows similarly.

Theorem 3.1. Almost surely,

lim
N→∞

VN(t)

E VN(t)
= 1

and, so, the estimator H̆N(t) converges almost surely to H(t) as N → ∞.
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Proof. This result is an application of the Borel–Cantelli lemma. Let ε > 0. By Lemma 3.2,
there exists a δ such that ‖VN(t) − E VN(t)‖2

2 ≤ cN1−γ−4H(t)+δ and δ < 1 − γ . Then, by
Lemma 3.1,

P

(∣∣∣∣ VN(t)

E VN(t)
− 1

∣∣∣∣ > ε

)
= P(|VN(t) − E VN(t)| > ε E VN)

≤ P

(
|VN(t) − E VN(t)| > ε

C7√
c

N(1−γ−δ)/2‖VN(t) − E VN(t)‖2

)
.

Since VN(t)−E VN(t) is a quadratic polynomial of Gaussian random variables, by Theorem 6.7
of [10], for ε(C7/

√
c)N(1−γ+δ)/2 > 2,

P

(
|VN(t)−E VN(t)| > ε

C7√
c
N(1−γ−δ)/2‖VN(t)−E VN(t)‖2

)
≤ exp

(
−κε

C7√
c

N(1−γ−δ)/2
)

,

where κ > 0 is an absolute constant. This implies that

∞∑
N=1

P

(∣∣∣∣ VN(t)

E VN(t)
− 1

∣∣∣∣ > ε

)
< ∞,

so the result follows from the Borel–Cantelli lemma. By Lemma 3.1,

lim
N→∞ log2

E VN/2(t)

E VN(t)
= −(1 − γ ) + 2H(t);

hence,

lim
N→∞

1

2

(
log2

1 + 2�N1−γ 	
1 + 2�(N/2)1−γ 	 + log2

VN/2(t)

VN(t)

)
= H(t)

almost surely.

It follows from Lemma 3.1 that, for (1 − γ )(4H(t) − 3) − 4β < 0,

N−(1−γ )E

(
VN − E VN

E VN

− VN/2 − E VN/2

E VN/2

)2

→ C10,

where

C10 = 1 + 2−(1−γ )

4(4 − 4H (t))2

∞∑
i=−∞

(−|i + 2|2H(t) + 4|i + 1|2H(t) − 6|i|2H(t)

+ 4|i − 1|2H(t) − |i − 2|2H(t))2

+ 21−γ

4(4 − 4H (t))2

∞∑
i=−∞

(−|i + 3|2H(t) + 2|i + 2|2H(t) + |i + 1|2H(t)

− 4|i|2H(t) + |i − 1|2H(t) + 2|i − 2|2H(t) − |i + 3|2H(t))2.

(3.4)
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Lemma 3.3. There exists a constant C11 > 0 such that, for all N > 1,∣∣∣∣2H(t) − log2
1 + 2�N1−γ 	

1 + 2�(N/2)1−γ 	 − log2
E VN/2

E VN

∣∣∣∣ ≤ C11 ln(N)N−γβ .

Proof. By (3.1),

2H(t) − log2
1 + 2�N1−γ 	

1 + 2�(N/2)1−γ 	 − log2
E VN/2

E VN

≤ 2H(t) − log2((4 − 4H(t))A(H(t))(N/2)−2H(t)

− C3 ln(N/2)(N/2)−2H(t)−γβ)

+ log2((4 − 4H(t))A(H(t))N−2H(t) + C3 ln(N)N−2H(t)−γβ)

= − log2((4 − 4H(t))A(H(t)) − C3 ln(N/2)(N/2)−γβ)

+ log2((4 − 4H(t))A(H(t)) + C3 ln(N)N−γβ)

≤ C11 ln(N)N−γβ .

The lower bound holds similarly, proving the result.

Lemma 3.4. For (1 − γ )(4H(t) − 3) − 4β < 0,

1√
C10N−(1−γ )

(
VN − E VN

E VN

− VN/2 − E VN/2

E VN/2

)
d−→ N(0, 1)

as N → ∞.

Proof. Let HN be the Gaussian Hilbert space generated by {Xi+1 − Xi : − �N1−γ 	 ≤ i ≤
�N1−γ 	}. Then (VN −E VN)/ E VN − (VN/2 −E VN/2)/ E VN/2 is in the second homogeneous
chaos of H and, so, we apply the representation formula from Theorem 6.1 of [10]. Let
T̃N : HN → HN be the operator T̃N (ξ) = 1

2π1((VN − E VN)ξ) where π1 is the orthogonal
projection onto HN . Acting on vectors of the form (si(Xi+1 − Xi))−�N1−γ 	≤i≤�N1−γ 	, T̃N is
the matrix

[E(Xi+1 − Xi)(Xj+1 − Xj)]i,j=−�N1−γ 	···�N1−γ 	.

By a standard result in linear algebra, the largest eigenvalue of T̃N has absolute value at most

max
i

�N1−γ 	∑
j=−�N1−γ 	

| E(Xi+1 − Xi)(Xj+1 − Xj)|.

By Lemma 3.1, for (2H(t) − 1)(1 − γ ) < 2β,

�N1−γ 	∑
j=−�N1−γ 	

| E(Xi+1 − Xi)(Xj+1 − Xj)|

≤ 2
2�N1−γ 	∑

j=1

C4j
2H(t)−2 ln(N)2N−2H(t)−2β

+ C5j
2H(t)−3 ln(N)2N−2H(t)−γβ + C6j

2H(t)−4N−2H(t)

≤ c1N
−2H(t).
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Now let T̃ ′
N be the operator

T̃ ′
N(ξ) = 1

2
π1

(
1√

C10N−(1−γ )

(
VN − E VN

E VN

− VN/2 − E VN/2

E VN/2

)
ξ

)
.

Then, by Theorem 6.1 of [10],

1√
C10N−(1−γ )

(
VN − E VN

E VN

− VN/2 − E VN/2

E VN/2

)

can be rewritten as ∑
j

λj,N (ξ2
j,N − 1),

where the λj,N are the eigenvalues of T̃ ′
N and (for fixed N ) the ξj,N are independent N(0, 1)-

distributed random variables. Since

T̃ ′
N = 1√

C10N−(1−γ )

(
T̃N

E VN

− T̃N/2

E VN/2

)
,

the maximum eigenvalue of T̃ ′
N is at most

1√
C10N−(1−γ )

(
c1N

−2H(t)

C7N1−γ−2H(t)
+ c1(N/2)−2H(t)

C7(N/2)1−γ−2H(t)

)
≤ c3N

−(1−γ )/2

for (2H(t) − 1)(1 − γ ) < 2β, so maxj |λj,N | → 0 as N → ∞. By Theorem 7.1.2 of [8],

1√
C10N−(1−γ )

(
VN − E VN

E VN

− VN/2 − E VN/2

E VN/2

)
=

∑
j

λj,N (ξ2
j,N − 1)

d−→ N(0, 1)

as N → ∞. Similar calculations hold for (2H(t) − 1)(1 − γ ) ≥ 2β.

Theorem 3.2. (Central limit theorem.) If (1 − γ )(4H(t) − 3) − 4β < 0 and

γ >
1

1 + 2β
,

then
ln 2√

C10N−(1−γ )
(H(t) − H̆N(t))

d−→ N(0, 1)

as N → ∞, where C10 is as given in (3.4).

Proof. By Lemma 3.3,

∣∣∣∣H(t) − 1

2

(
log2

1 + 2�N1−γ 	
1 + 2�(N/2)1−γ 	 + log2

E VN/2

E VN

)∣∣∣∣ ≤ C11 ln(N)N−γβ

and, so,

ln 2√
C10N−(1−γ )

(
H(t) − 1

2

(
log2

1 + 2�N1−γ 	
1 + 2�(N/2)1−γ 	 + log2

E VN/2

E VN

))
→ 0.
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It follows from Lemma 3.4 that

ln 2√
C10N−(1−γ )

(
log2

VN

E VN

− log2
VN/2

E VN/2

)
d−→ N(0, 1),

which completes the result.

The condition that 4β > (4H(t) − 3)(1 − γ ) is always satisfied for H(t) ≤ 3
4 . For all

functions H(t), γ can be chosen such that 4β > (4H(t) − 3)(1 − γ ).

Appendix A.

Let φ be a Schwartz function. Then

〈
WH (t), Re

∫
R

φ(ξ)W̃ (dξ)

〉
= d

dt

〈
BH (t), Re

∫
R

φ(ξ)W̃ (dξ)

〉

= d

dt
Re

∫
R

eiξ t − 1

|ξ |H+1/2 φ(ξ) dξ

= Re
∫

R

iξeiξ t

|ξ |H+1/2 φ(ξ) dξ

and, so,

〈∫ t

0
WH(s)(s) ds, Re

∫
R

φ(ξ)W̃ (dξ)

〉
=

〈
YH (t), Re

∫
R

φ(ξ)W̃ (dξ)

〉
,

which proves that (2.1) and (2.2) are equal.

Lemma A.1. Let f ∈ C2([a, b]) and let c1, c2 > 0 be constants. Then, for any N , r , s, x, y,
and z satisfying 0 < |z| < 1 < N , |z|s ≤ c1, (ln |z|)(|x| + |y|) ≤ c2, |x|, |y| ≤ C1N

−β , and
r + ix + jy ∈ [a, b] for i = 0, 1 and j = 0, 1, there exists a constant K > 0, depending only
on f , c1, c2, β, and C1, such that

∣∣∣∣
1∑

i=0

1∑
j=0

(−1)i+j f (r + ix + jy)|z|s+ix+jy

∣∣∣∣ ≤ K(1 + ln |z|)2N−2β.

The result is established by expanding in Taylor series.

Proof of Theorem 2.1. Begin by approximating H(t) on a 2−n grid; then

Hn(s) =
∑

i

H(i/2n) 1[i/2n,(i+1)/2n)(s),

and we let

Yn(t) =
∫

R

(∫ t

0

iξeiξs

|ξ |Hn(s)+1/2
ds

)
W̃ (dξ).
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Since Yn is the sum of increments of fractional Brownian motion we can estimate that

E Yn(t)
2 =

�2nt	∑
i=1

�2nt	∑
j=1

A

(
H(i/2n, j/2n)

2

)
1

2
2−n(H(i/2n,j/2n))

× [|i − j + 1|H(i/2n,j/2n) − 2|i − j |H(i/2n)+H(j/2n)

+ |i − j − 1|H(i/2n)+H(j/2n)]

=
{ �2nt	∑

i=1

�2nt	∑
j=1

A

(
H

(
i

2n

))
1

2
2−n2H(i/2n)φ

(
i − j, 2H

(
i

2n

))

+
�2nt	∑
i=1

�2nt	∑
j=1

A

(
H(i/2n, j/2n)

2

)
1

2
2−n(H(i/2n,j/2n))φ

(
i − j, H

(
i

2n
,

j

2n

))}

+
{

− A

(
H

(
i

2n

))
1

4
2−n2H(i/2n)φ

(
i − j, 2H

(
i

2n

))

− A

(
H

(
j

2n

))
1

4
2−n2H(j/2n)φ

(
i − j, 2H

(
j

2n

))}

=: {I } + {II },
where φ(i, η) = |i + 1|η − 2|i|η + |i − 1|η. By the dominated convergence theorem with
dominating function K[A(H(s))H(s)s2H(s)−1 + A(H(s))H(s)(1 − s)2H(s)−1], we find that

I =
�2nt	∑
i=1

�2nt	∑
j=1

A

(
H

(
i

2n

))
1

2
2−n2H(i/2n)φ

(
i − j, 2H

(
i

2n

))

→
∫ t

0
A(H(s))H(s)s2H(s)−1 ds +

∫ t

0
A(H(s))H(s)(1 − s)2H(s)−1 ds

as n → ∞. For large i, φ(i, η) ≈ η(η − 1)|i|η−2. By Lemma A.1, for any α with −1 < α <

2a + 2β − 2, there exists a C2 such that

|fH (x, y)| ≤ C2 min{|x − y|, 1}α. (A.1)

In particular, this implies that fH (x, y) ∈ L1([0, t]2). Another application of the dominated
convergence theorem, with dominating function KfH (x, y), shows that

II → 1

4

∫ t

0

∫ t

0
fH (x, y) dx dy.

Similar calculations in estimating E(Yn − Ym)2 show that Yn is a Cauchy sequence in L2.
Finally, the pointwise convergence∫ t

0

iξeiξs

|ξ |Hn(s)+1/2
ds →

∫ t

0

iξeiξs

|ξ |H(s)+1/2
ds

implies that Yn → Y in L2.
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It is sufficient to show local asymptotic self-similarity at 0 and, since integrated fractional
white noise is a zero-mean Gaussian process, it is sufficient to show that, for each s and t ,

E h−2H(0)YH (sh)YH (th) → A(H(0)) E BH(0)(s)BH(0)(t). (A.2)

Estimating using (2.5) and (A.1), it follows that

E h−2H(t0)YH (sh)2 → A(H(t0))s
2H(t0) = A(H(0)) E BH(0)(s)

2

and, writing 2YH (sh)YH (th) = 2YH (sh)2 + 2YH (th)2 − (YH (sh) − YH (th))2, (A.2) follows.
Continuity and the Hölder exponent follow from the application of Kolmogorov’s continuity

theorem.

Altering the proof of Theorem 2.1, we obtain the following corollary.

Corollary A.1. For t1 < t2 ≤ t3 < t4, the expected value of (Y (t2) − Y (t1))(Y (t4) − Y (t3)) is
given by

1

2

∫ t2

t1

∫ t4

t3

A

(
H(x, y)

2

)
H(x, y)(H(x, y) − 1)|x − y|H(x,y)−2 dx dy.

Proof of Lemma 3.1. Let aN = min{H(t) : s ∈ [t − N−γ , t + N−γ ]}, bN = max{H(t) :
s ∈ [t − N−γ , t + N−γ ]}, Amin = min{A(H(t)) : s ∈ [t − N−γ , t + N−γ ]}, and Amax =
max{A(H(t)) : s ∈ [t − N−γ , t + N−γ ]}. By the Hölder condition on H(t), |aN − H(t)| ≤
C1N

−γβ and |Amin − A(H(t))| ≤ cN−β . Taking N large enough that 2H(t) ≤ 2bN <

2H(t) + γβ < α + 2, from Theorem 2.1 and (A.1) we have

E(Xi+1 − Xi)
2 = E

(
2X2

i+1 + 2X2
i −

(
YH

(
t + j + 1

N

)
− YH

(
t + j − 1

N

))2)

≤ 4AmaxN
−2aN − Amin(N/2)−2bN + C2N

−α−2.

Since |Amax − A(H(t))| ≤ cN−γβ and |N2H(t)−2aN − 1| ≤ c ln(N)N−γβ ,

E(Xi+1 − Xi)
2 − (4 − 4H(t))A(H(t))N−2H(t) ≤ C3 ln(N)N−2H(t)−γβ .

The reverse inequality similarly holds, proving (3.1). Now, for |i − j | > 2 we define I as

∫ t+(i+1)/N

(t+i)/N

∫ t+(j+1)/N

t+j/N

∣∣∣∣
1∑

k=0

1∑
�=0

(−1)k+�A

(
H(x − k/N, y − �/N)

2

)
H

(
x − k

N
, y − �

N

)

×
(

H

(
x − k

N
, y − �

N

)
− 1

)

×
∣∣∣∣ i − j

N

∣∣∣∣
H(x−k/N,y−�/N)−2∣∣∣∣ dx dy.
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Then, by Lemma A.1,

|I | ≤ |i − j |2H(t)−2N−2H(t)

×
∫ 1

0

∫ 1

0

1∑
k=0

1∑
�=0

∣∣∣∣A
(

H(t + (x − k)/N, t + (y − l)/N)

2

)
H

(
t + x − k

N
, t + y − l

N

)

×
(

H

(
t + x − k

N
, t + y − l

N

)
− 1

)

×
∣∣∣∣ i − j

N

∣∣∣∣
H(t+(x−k)/N,t+(y−l)/N)−2H(t)∣∣∣∣

× N−H(t+(x−k)/N,t+(y−l)/N) dx dy

≤ C4 ln(|i − j |)2|i − j |2H(t)−2N−2H(t)−2β. (A.3)

Let

II =
∫ t+(i+1)/N

(t+i)/N

∫ t+(j+1)/N

t+j/N

[ 1∑
k=0

1∑
�=0

A

(
H(x − k/N, y − l/N)

2

)

× H

(
x − k

N
, y − l

N

)(
H

(
x − k

N
, y − l

N

)
− 1

)

×
(∣∣∣∣ i − j

N

∣∣∣∣
H(x−k/N,y−l/N)−2

−
∣∣∣∣
(

x − k

N

)
−

(
y − l

N

)∣∣∣∣
H(x−k/N,y−l/N)−2)

−
1∑

k=0

1∑
�=0

A(H(t))2H(t)(2H(t) − 1)

×
(∣∣∣∣ i − j

N

∣∣∣∣
2H(t)−2

−
∣∣∣∣
(

x − k

N

)
−

(
y − l

N

)∣∣∣∣
2H(t)−2)]

dy dx.

Then

|II | ≤
∫ t+(i+1)/N

t+(i−1)/N

∫ t+(j+1)/N

t+(j−1)N

∣∣∣∣A
(

H(x, y)

2

)
H(x, y)(H(x, y) − 1)

×
(∣∣∣∣ i − j

N

∣∣∣∣
H(x,y)−2

− |x − y|H(x,y)−2
)

− A(H(t))2H(t)(2H(t) − 1)

×
(∣∣∣∣ i − j

N

∣∣∣∣
2H(t)−2

− |x − y|2H(t)−2
)∣∣∣∣ dy dx.

If

(x, y) ∈
[
t + i − 1

N
, t + i + 1

N

]
×

[
t + j − 1

N
, t + j + 1

N

]
and |i − j | > 2,

https://doi.org/10.1239/jap/1183667409 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1183667409


Integrated fractional white noise 407

then |i − j | − 2 ≤ N |x − y| ≤ |i − j | + 2 and, so,∣∣∣∣ ln
|i − j |

N
− ln |x − y|

∣∣∣∣ ≤ 4|i − j |−1.

It follows that
∣∣∣∣
∣∣∣∣ i − j

N

∣∣∣∣
2H(t)−2

− |x − y|2H(t)−2
∣∣∣∣ ≤ |i − j |2H(t)−3N−2H(t)+2.

Thus,
∣∣∣∣A

(
H(x, y)

2

)
H(x, y)(H(x, y) − 1)

(∣∣∣∣ i − j

N

∣∣∣∣
H(x,y)−2

− |x − y|H(x,y)−2
)

− A(H(t))2H(t)(2H(t) − 1)

(∣∣∣∣ i − j

N

∣∣∣∣
2H(t)−2

− |x − y|2H(t)−2
)∣∣∣∣

≤
∣∣∣∣A

(
H(x, y)

2

)
H(x, y)(H(x, y) − 1) − A(H(t))2H(t)(2H(t) − 1)

∣∣∣∣
×

∣∣∣∣
∣∣∣∣ i − j

N

∣∣∣∣
2H(t)−2

− |x − y|2H(t)−2
∣∣∣∣

+ A

(
H(x, y)

2

)
H(x, y)(H(x, y) − 1)

∣∣∣∣ i − j

N

∣∣∣∣
2H(t)−2

×
((

1 −
(

N |x − y|
|i − j |

)2H(t)−2)(
1 − |x − y|H(x,y)−2H(t)

)

+
(∣∣∣∣ i − j

N

∣∣∣∣
H(x,y)−2H(t)

− |x − y|H(x,y)−2H(t)

))

≤ C5 ln(|i − j |)2|i − j |2H(t)−3N2−2H(t)−γβ,

by expanding out in Taylor series. Hence,

|II | ≤ C5 ln(|i − j |)2|i − j |2H(t)−3N−2H(t)−γβ . (A.4)

Adding (A.3) and (A.4) and using Corollary A.1 proves (3.2) for |i − j | > 2. The case in which
|i − j | ≤ 2 is proved similarly to (3.1).
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