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Abstract

We study a model arising in chemistry where n elements numbered 1, 2, . . . , n are
randomly permuted and if i is immediately to the left of i + 1 then they become stuck
together to form a cluster. The resulting clusters are then numbered and considered as
elements, and this process keeps repeating until only a single cluster is remaining. In this
article we study properties of the distribution of the number of permutations required.
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1. Introduction

For the classic hat-check problem first proposed in 1708 by Montmort [2], the following
variation appears in [6, p. 93]. Each member of a group of n individuals throws his or her hat
in a pile. The hats are shuffled, each person chooses a random hat, and the people who receive
their own hat depart. Then the process repeats with the remaining people until everybody has
departed; let N be the number of shuffles required. With Xi representing the total number of
people who have departed after shuffle number i, it is easy to show that Xi − i is a martingale
and, thus, by the optional sampling theorem we elegantly see that E[N ] = n.

Someone getting their own hat can also be thought of as corresponding to a cycle of length
one in a random permutation. Properties of cycles of various lengths in random permutations
have been studied extensively; see [1] and [3] for entry points to this literature. A variation of
this problem was presented in [5], where it was given as a model for a chemical bonding process.
Below we discuss this variation and study its properties. We quote the following description
of the chemistry application from [5], where a recursive formula was given to numerically
compute the mean.

There are 10 molecules in some hierarchical order operating in a system. A catalyst is added
to the system and a chemical reaction sets in. The molecules line up. In the line-up from left
to right molecules in consecutive increasing hierarchical order bond together and become
one. A new hierarchical order sets among the fused molecules. The catalyst is added again
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A random permutation model 1061

to the system and the whole process starts all over again. The question raised is how many
times catalysts are expected to be added in order to get a single lump of all molecules.

This variation presented in [5] can be abstractly stated as follows. Suppose that we have n

elements numbered 1, 2, . . . , n. These elements are randomly permuted, and if i is immediately
to the left of i+1 then i and i+1 become stuck together to form (possibly with other adjacently
numbered elements) a cluster. These clusters are then randomly permuted and if a cluster ending
with i immediately precedes one starting with i + 1 then those two clusters join together to
form a new cluster. This continues until there is only one cluster, and we are interested in N(n),
the number of permutations that are needed. For instance, suppose that n = 7 and that the first
permutation is

3, 4, 5, 1, 2, 7, 6,

which results in the clusters {3, 4, 5}, {1, 2}, {6}, and {7}. If a random permutation of these four
clusters gives the ordering

{6}, {7}, {3, 4, 5}, {1, 2}
then the new sets of clusters are {6, 7}, {3, 4, 5}, and {1, 2}. If a random permutation of these
three clusters gives the ordering

{3, 4, 5}, {6, 7}, {1, 2}
then the new sets of clusters are {3, 4, 5, 6, 7} and {1, 2}. If a random permutation of these two
clusters gives the ordering

{1, 2}, {3, 4, 5, 6, 7}
then there is now a single cluster {1, 2, 3, 4, 5, 6, 7} and N(7) = 4.

The random variable N(n) can be analyzed as a first passage time from state n to state 1
of a Markov chain whose state is the current number of clusters. When the state of this chain
is i, we will designate the clusters as 1, . . . , i, with 1 being the cluster whose elements are
smallest, 2 being the cluster whose elements are the next smallest, and so on. For instance,
in the preceding n = 7 case, the state after the first transition is 4, with 1 being the cluster
{1, 2}, 2 being the cluster {3, 4, 5}, 3 being the cluster {6}, and 4 being the cluster {7}. With
this convention, the transitions from state i are exactly the same as if the problem began with
the i elements, 1, . . . , i.

In Section 2 we compute the transition probabilities of this Markov chain and use them to
obtain some stochastic inequalities. In Section 3 we obtain upper and lower bounds on E[N(n)],
as well as bounds on its distribution. In Section 4 we give results for a circular version of the
problem.

2. The transition probabilities

With the above definitions, let Dn be the decrease in the number of clusters starting from
state n. Then we have the following proposition.

Proposition 1. For 0 ≤ k < n,

P(Dn = k) = n − k + 1

nk!
n−k+1∑

i=0

(−1)i

i! .
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Proof. Letting Ai be the event that i immediately precedes i +1 in the random permutation,
then Dn is the number of events A1, . . . , An−1 that occur. Then, with

Sj =
∑

0<i1<···<ij <n

P(Ai1 · · · Aij ),

the inclusion/exclusion identity (see [4, p. 106]) gives

P(Dn = k) =
n−1∑
j=k

Sj

(
j

k

)
(−1)j+k.

Now consider P(Ai1 · · · Aij ). If we think of a permutation of n elements as having n degrees of
freedom then, for each event Ai in the intersection, one degree of freedom in the permutation is
dropped. For instance, suppose that we want P(A2A3A6). Then, in order for these three events
to occur, 2, 3, and 4 must be consecutive values of the permutation, as must be 6 and 7. Because
there are n − 5 other values, there are thus (n − 3)! such permutations. Similarly, for the event
A2A4A6 to occur, 2 and 3 must be consecutive values of the permutation, as must be 4, 5 and
6, 7. As there are n − 6 other values, there are (n − 3)! such permutations. Consequently, for
0 < i1 < · · · < ij < n,

P(Ai1 · · · Aij ) = (n − j)!
n! .

As a result,

Sj =
(

n − 1

j

)
(n − j)!

n! = n − j

nj ! ,

which yields

P(Dn = k) =
n−1∑
j=k

(
j

k

)
(−1)j+k n − j

nj !

=
n−k−1∑

i=0

(−1)i
(

k + i

k

)
n − k − i

n(k + i)!

=
n−k−1∑

i=0

(−1)i
n − k − i

nk! i!

= 1

nk!
(

(n − k)

n−k−1∑
i=0

(−1)i

i! −
n−k−1∑

i=1

(−1)i

(i − 1)!
)

= 1

nk!
(

(n − k + 1)

n−k−2∑
i=1

(−1)i

i! + (n − k)
(−1)n−k−1

(n − k − 1)!
)

.

Thus, the result follows once we show that

(n − k)
(−1)n−k−1

(n − k − 1)! = (n − k + 1)

(
(−1)n−k−1

(n − k − 1)! + (−1)n−k

(n − k)! + (−1)n−k+1

(n − k + 1)!
)

or, equivalently, that

(−1)n−k

(n − k − 1)! = (n − k + 1)

(
(−1)n−k

(n − k)! + (−1)n−k+1

(n − k + 1)!
)
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or

1 = (n − k + 1)

(
1

n − k
− 1

(n − k + 1)(n − k)

)
,

which is immediate.

Remark 1. A recursive expression for P(Dn = k), though not in closed form, was given in [5].

From Proposition 1 we immediately conclude that Dn converges in distribution to a Poisson
random variable with mean 1.

Corollary 1. We have limn→∞ P(Dn = k) = e−1/k!.
We now present two results that will be used in the next section. Recall from [6, p. 133] that a

discrete random variable X is said to be likelihood ratio smaller than Y if P(X = k)/ P(Y = k)

is nonincreasing in k.

Corollary 2. With the above definitions, Dn is likelihood ratio smaller than a Poisson random
variable with mean 1.

Proof. We need to show that k! P(Dn = k) is nonincreasing in k. But, with Bk =
nk! P(Dn = k) we have

Bk−1 − Bk =
n−k+1∑

i=0

(−1)i

i! + (n − k + 2)
(−1)n−k+2

(n − k + 2)!

=
n−k∑
i=0

(−1)i

i!
> 0,

which proves the result.

Corollary 3. The state of the Markov chain after a transition from state n, n−Dn, is likelihood
ratio increasing in n.

Proof. From Proposition 1,

P(n − Dn = k) = k + 1

n(n − k)!
k+1∑
i=0

(−1)i

i! .

Consequently,
P(n + 1 − Dn+1 = k)

P(n − Dn = k)
= n

(n + 1)(n + 1 − k)
.

As the preceding is increasing in k, the result follows.

3. The random variable N(n)

Let Xi be the ith decrease in the number of clusters, so that

Sk ≡ n −
k∑

i=1

Xi

is the state of the Markov chain, starting in state n, after k transitions, k ≥ 1.
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Proposition 2. We have

P(N(n) > k) ≥
n−1∑
i=0

e−kki

i! .

Proof. Let the Yi, i = 1, . . . , k, be independent Poisson random variables, each with
mean 1. Now, because likelihood ratio is a stronger ordering than stochastic order (see
Proposition 4.20 of [6]), it follows by Corollary 2 that Xi , conditional on X1, . . . , Xi−1, is
stochastically smaller than a Poisson random variable with mean 1. Consequently, the random
vector X1, . . . , Xk can be generated in such a manner that Xi ≤ Yi for each i = 1, . . . , k. But
this implies that

P(N(n) > k) = P(X1 + · · · + Xk < n)

≥ P(Y1 + · · · + Yk < n)

=
n−1∑
i=0

e−kki

i! .

We now consider bounds on E[N(n)].
Proposition 3. We have

E[N(n)] ≤ n − 1 +
n−1∑
i=1

1

i
.

Proof. First note that

E[Dn] =
n−1∑
i=1

P(i immediately precedes i + 1) = n − 1

n
. (1)

Because the Markov chain cannot make a transition from a state into a higher state and E[Dn]
is nondecreasing in n, it follows from Proposition 5.23 of [6] that

E[N(n)] ≤
n∑

i=2

1

E[Di] = n − 1 +
n−1∑
i=1

1

i
.

Proposition 4. We have

E[N(n)] ≥ n − 1 + e

n(e − 1)
+ e

(e − 1)2

n−1∑
j=2

1

j
.

Proof. To begin, note that

Zk =
k∑

i=1

(Xi − E[Xi | X1, . . . , Xi−1]), k ≥ 1, (2)

is a zero-mean martingale. Hence, by the martingale stopping theorem,

E[ZN(n)] = 0. (3)
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Now, because E[Xi | X1, . . . , Xi−1] is the expected decrease from state Si−1, it follows from (1)
that

E[Xi | X1, . . . , Xi−1] = E[Xi | Si−1] = E[DSi−1 | Si−1] = 1 − 1

Si−1
.

Using this, and the fact that
∑N(n)

i=1 Xi = n − 1, we obtain, from (2) and (3),

n − 1 − E[N(n)] + E

[N(n)∑
i=1

1

Si−1

]
= 0.

Now (notationally suppressing its dependence on the initial state n), let Tj denote the amount
of time that the Markov chain spends in state j, j > 1. Then

N(n)∑
i=1

1

Si−1
=

n∑
j=2

Tj

j
.

Hence,

E[N(n)] = n − 1 +
n∑

j=2

1

j
E[Tj ] ≥ n − 1 + e

(e − 1)2

n−1∑
j=2

1

j
+ e

n(e − 1)
,

where, for the inequality, we made use of the following proposition.

Proposition 5. We have

E[Tn] = 1

P(Dn > 0)
≥ e

e − 1
,

E[Tj ] = P(Tj > 0)

P(Dj > 0)
≥ e

(e − 1)2 .

To prove Proposition 5, we will need a series of lemmas.

Lemma 1. Let Wj, 2 ≤ j < n, denote the state of the Markov chain from which the first
transition to a state less than or equal to j occurs. Then, for r > j ,

P(Tj > 0 | Wj = r) ≥ P(Tj > 0 | Wj = j + 1) = P(Dj+1 = 1 | Dj+1 ≥ 1).

Proof. Let Yr = r − Dr . Then,

P(Tj > 0 | Wj = r) = P(Dr = r − j | Dr ≥ r − j)

= P(Yr = j | Yr ≤ j)

= P(Yr = j)∑j
i=1 P(Yr = i)

= 1∑j
i=1 P(Yr = i)/ P(Yr = j)

. (4)

But, for i ≤ j , it follows from Corollary 4 that

P(Yr+1 = j)

P(Yr = j)
≥ P(Yr+1 = i)

P(Yr = i)
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or, equivalently, that
P(Yr+1 = i)

P(Yr+1 = j)
≤ P(Yr = i)

P(Yr = j)
.

Thus, by (4), P(Tj > 0 | Wj = r) is nondecreasing in r .

Lemma 2. For all j ≥ 2,

P(Dj+1 = 1 | Dj+1 ≥ 1) ≥ e−1

1 − e−1 .

Proof. Let Mk = ∑k
i=0(−1)i/i!. By Proposition 1 we need to show that

Mj+1

1 − (j + 2)Mj+2/(j + 1)
≥ e−1

1 − e−1 .

That is, we need to show that, for all n ≥ 3,

Mn(1 − e−1) − e−1
(

1 − n + 1

n
Mn+1

)
≥ 0.

Case 1. Suppose that n is even and that n > 2. Then,

Mn(1 − e−1) − e−1
(

1 − n + 1

n
Mn+1

)

= Mn(1 − e−1) − e−1
[

1 − n + 1

n

(
Mn − 1

(n + 1)!
)]

= Mn

(
1 + e−1

n

)
− e−1

(
1 + 1

nn!
)

≥ e−1
(

1 + e−1

n

)
− e−1

(
1 + 1

nn!
)

= e−1

n

(
e−1 − 1

n!
)

> 0,

where we used the fact that Mn > e−1.
Case 2. Suppose that n is odd. In this case,

Mn(1 − e−1) − e−1
(

1 − n + 1

n
Mn+1

)

=
(

Mn+1 − 1

(n + 1)!
)

(1 − e−1) − e−1
(

1 − n + 1

n
Mn+1

)

= Mn+1

(
1 + e−1

n

)
− 1 − e−1

(n + 1)! − e−1

≥ e−1
(

1 + e−1

n

)
− 1 − e−1

(n + 1)! − e−1

= e−1
(

e−1

n
+ 1

(n + 1)!
)

− 1

(n + 1)! ,
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which will be nonnegative provided that

e−2 ≥ n

(n + 1)! (1 − e−1)

or, equivalently, that

e(e − 1) ≤ (n + 1)!
n

,

which is easily seen to be true when n ≥ 3. This completes the proof of Lemma 2.

We need one additional lemma.

Lemma 3. As n → ∞, P(Dn = 0) ↓ e−1.

Proof. By Proposition 1,

P(Dn = 0) = n + 1

n
Mn+1,

yielding limn P(Dn = 0) = e−1. To show that the convergence is monotone, note that

n + 1

n
Mn+1 − n + 2

n + 1
Mn+2 = n + 1

n
Mn+1 − n + 2

n + 1

(
Mn+1 + (−1)n

(n + 2)!
)

= Mn+1

n(n + 1)
+ (−1)n+1

(n + 1)(n + 1)! .

When n is odd, the preceding is clearly positive. When n is even, Mn+1 = Mn − 1/(n + 1)!,
and, thus, we must show that

Mn − 1

(n + 1)! ≥ 1

(n + 1)(n − 1)!
or, equivalently, that

Mn ≥ 1

n! ,
which follows since, for n even,

Mn = Mn−1 + 1

n! ≥ 1

n! .
Proof of Proposition 5. Given that state j is entered, the time spent in that state will have a

geometric distribution with parameter P(Dj > 0). Hence,

E[Tj ] = P(Tj > 0)

P(Dj > 0)
.

Now, P(Tn > 0) = 1, and, by Lemma 3, P(Dn > 0) ≤ 1 − e−1, which verifies the first part of
Proposition 5. Also, for 2 ≤ j < n, Lemmas 1 and 2 yield

P(Tj > 0) ≥ P(Dj+1 = 1 | Dj+1 ≥ 1) ≥ e−1

1 − e−1 .

Hence, by Lemma 3,

E[Tj ] ≥ e−1

(1 − e−1)2 = e

(e − 1)2 ,

which completes the proof of Proposition 5.
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Table 1.

n Lower bound Upper bound

100 102.62 104.19
1000 1004.72 1006.50

1 000 000 1 000 011.08 1 000 013.41

Corollary 4. We have

n − 1 + e

n(e − 1)
+ e

(e − 1)2 ln

(
n

2

)
≤ E[N(n)] ≤ n + ln

(
2n − 1

3

)
.

Proof. Let X be uniformly distributed between j − 1
2 and j + 1

2 . Then,

ln

(
j + 1/2

j − 1/2

)
=

∫ j+1/2

j−1/2

1

x
dx = E

[
1

X

]
≥ 1

E[X] = 1

j
,

where the inequality used Jensen’s inequality. Hence,

n−1∑
j=2

1

j
≤ ln

(
n − 1/2

3/2

)
= ln

(
2n − 1

3

)
,

and the upper bound follows from Proposition 3. To obtain the lower bound, we use Proposi-
tion 4 along with the inequality

ln

(
j + 1

j

)
=

∫ j+1

j

1

x
dx ≤ 1

j
.

Remarks. 1. Corollary 4 yields the results given in Table 1.

2. It follows from Corollary 3, using a coupling argument, that N(n) is stochastically increasing
in n.

4. The circular case

Whereas we have previously assumed that at each stage the clusters are randomly arranged
in a linear order, in this section we suppose that they are randomly arranged around a circle,
again with all possibilities being equally likely. We suppose that if a cluster ending with i is
immediately counterclockwise to a cluster beginning with i + 1 then these clusters merge. Let
N∗(n) denote the number of stages needed until all n elements are in a single cluster, and let
D∗

n denote the decrease in the number of clusters from state n.

Lemma 4. For n ≥ 2,
E[D∗

n] = var(D∗
n) = 1.

Proof. If Bi is the event that i is the counterclockwise neighbor of i + 1 then

D∗
n =

n−1∑
i=1

1Bi
.
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Now,

P(Bi) = (n − 2)!
(n − 1)! = 1

n − 1
, i = 1, . . . , n − 1,

and, for i �= j ,

P(BiBj ) = (n − 3)!
(n − 1)! .

Hence,

E[D∗
n] =

n−1∑
i=1

1

n − 1
= 1

and

var(D∗
n) =

n−1∑
i=1

1

n − 1

(
1 − 1

n − 1

)
+ 2

(
n − 1

2

)(
(n − 3)!
(n − 1)! − 1

(n − 1)2

)

= n − 2

n − 1
+ 1 − n − 2

n − 1
= 1.

Proposition 6. We have
E[N∗(n)] = n − 1.

Proof. The proof is by induction on n. Because P(N∗(2) = 1) = 1, it is true when n = 2,
and so assume that E[N∗

k ] = k − 1 for all k = 2, . . . , n − 1. Then,

E[N∗(n) | D∗
n] = 1 + E[N∗(n − D∗

n) | D∗
n], (5)

yielding

E[N∗(n)] = 1 +
n−1∑
i=0

E[N∗(n − i)] P(D∗
n = i)

= 1 + E[N∗(n)] P(D∗
n = 0) +

n−1∑
i=1

E[N∗(n − i)] P(D∗
n = i)

= 1 + E[N∗(n)] P(D∗
n = 0) +

n−1∑
i=1

(n − i − 1) P(D∗
n = i)

= 1 + E[N∗(n)] P(D∗
n = 0) + (n − 1)(1 − P(D∗

n = 0)) − E[D∗
n]

= 1 + E[N∗(n)] P(D∗
n = 0) + (n − 1)(1 − P(D∗

n = 0)) − 1,

which proves the result.

Remark. Proposition 6 could also have been proved by using a martingale stopping argument,
as in the proof of Proposition 4.

Proposition 7. For n > 2,
var(N∗(n)) = n − 1.
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Proof. Let V (n) = var(N∗(n)). The proof is by induction on n. As it is true for n = 3,
since N∗(3) is geometric with parameter 1

2 , assume it is true for all values between 2 and n.
Now,

var(N∗(n) | D∗
n) = var(N∗(n − D∗

n) | D∗
n)

and, from (5) and Proposition 6,

E[N∗(n) | D∗
n] = n − D∗

n.

Hence, by the conditional variance formula,

V (n) =
n−1∑
i=0

V (n − i) P(D∗
n = i) + var(D∗

n)

= V (n) P(D∗
n = 0) +

n−1∑
i=1

V (n − i) P(D∗
n = i) + 1. (6)

Now, because P(D∗
n = n − 2) = 0 and V (1) = 0, the induction hypothesis yields

n−1∑
i=1

V (n − i) P(D∗
n = i) =

n−1∑
i=1

(n − i − 1) P(D∗
n = i).

Hence, from (6),

V (n) = V (n) P(D∗
n = 0) + (n − 1)(1 − P(D∗

n = 0)) − E[D∗
n] + 1

= V (n) P(D∗
n = 0) + (n − 1)(1 − P(D∗

n = 0)),

which proves the result.
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