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Abstract

Distribution tails F(t) = F(t, oc) are considered for which F(t - u) ~ ea"F(t) and F* F(t) ~ 2dF(t)
as t —» oc. A real analytic proof is obtained of a theorem by Chover, Wainger and Ney, namely that

d = J ea"F(du).

In doing so, a technique is introduced which provides many other results with a minimum of analysis.
One such result strengthens and generalizes the various known results on distribution tails of random
sums.

Additionally, the closure and factorization properties for subexponential distributions are investi-
gated further and extended to distributions with exponential tails.

1980 Mathematics subject classification (Amer. Math. Soc): 60 E 05.
Keywords: convolution tails, exponential tails, subexponential tails.

1. Introduction

Throughout this work we will use distribution tails and denote them, for example,
F(t) = F(t, oo), where F is a finite nonnegative measure. For convenience, the
distributions will have all their support on [0, oo). In application, these may be
probability distributions (that is, total measure equal to 1) but we will not always
assume so. Our convention is that integrals will exclude (include) the lower
(upper) endpoint. The exception to this rule is when the lower endpoint is zero or
for F(0) = F[0, oo). If a function A(t) is regularly varying with exponent p, we
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348 Daren B. H. Cline [2 ]

write A G RVp. Also, we will signify Al - kA2 and Ax < kA2 (Ax = o(A2) for
k = 0) when

A (t) A (t)
lim x . . = k and Urn sup 1 . < fc, respectively.

Of course, fc42 > 4̂X is the same as Ax < kA2.
The purpose of this paper is to consider these relations (~ and <), applied to

distribution tails and to their Stieltjes convolution F * G(t) -
JJx+y>lF(dx)G(dy). Multiple convolutions of F with itself will be denoted F*n

and F*° is the distribution with unit mass at zero. The discussion is limited to
the following classes of distributions.

The class La, a > 0, consists of all distributions F such that F{t — u) ~ eauF(t)
for each u. One may easily see that F e La if and only if F(ln t) G RV_a. When
a > 0, F is said to have exponential tail.

F is called convolution equivalent (F G Sa) if F e La and F* F ~ 2dF for
some finite positive d. If F e So (a = 0), it is called subexponential. For example,
F<= RV_p implies F e So.

The classes So and Sa have received attention with applications to branching
processes (Chistykov (1964), Chover, Wainger and Ney (1973a, b)), to renewal
theory (Embrechts and Goldie (1982)), to infinite variance time series (Davis and
Resnick (1985b) and to stable attraction of sums of products (Cline (1986)).
References to further applications in queueing theory, random walks and infinite
divisibility may be found in Embrechts and Goldie (1982). Conditions sufficient
for F e Sa are given in Cline (1986).

Chover, Wainger and Ney (1973a) first defined the class Sa in terms of the
probability masses on the lattice of nonnegative integers:

fn = F{n) and / „ • /„ = F* F{n), /1 = 0,1,2

That is, F e Sa if /„ ~ eafn+l and /„*/„ ~ 2dfn. They gave another, similar,
definition for densities of an absolutely continuous F. In their first paper, they
use a Banach algebra approach to demonstrate

(1.1) If F G Sa then d = m, where m= T ea"F{du).

Chover, Winger and Ney (1973a, b) also verify (1.1) for the "global" version,
where Sa is as we have defined it, in terms of distribution tails. Rudin (1973) and
Embrechts (1983) have given a real analytic proof for the lattice version of (1.1).
In this paper, Theorem 2.9 provides an elementary real analytic proof for the
distribution tails version. Embrechts' lattice version is a special case. However, the
version for densities is not (see the Conclusion).
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131 Exponential and subexponential tails 349

In the course of pursuing this objective we devise a technique to calculate
asymptotic relationships between convolution tails, which enables us to obtain
several other known or partially known results with ease. In particular, Theorem
2.13 states in its most complete form a result for the measure H = £~ XnF*n,
namely that with appropriate conditions on Xn, the following are equivalent.

(i) Fe Sa._
(ii) H ~ cF where c = 1% n\nm"~\
( i i i ) / /G Saand F* o(H).
That (i) implies (ii) is the main objective in Chover, Wainger and Ney (1973a,

b). Embrechts, Goldie and Veraverbeke (1979) and Embrechts and Goldie (1982)
prove the equivalency for special cases of Xn. Rudin (1973) and Embrechts (1983)
also prove (i) implies (ii) for lattice F.

Embrechts and Goldie (1980) consider the question, if Fx G 50 and F2 G So

then is Fx* F2e. Sol The question remains unanswered, but they show that
Fx * F2 G So is equivalent to Fx * F2 ~ m2Fx + mxF2, where rrij = Fj(0), and that
each is equivalent to axFx + a2F2 e So, where ax > 0, a2 > 0. In Theorem 3.4,
we extend this result to the class Sa (with wy = /0°° eauFj(du)) and strengthen it in
two important respects. First, if Fx,F2e La then either Fx G Sa or F2 G Sa is a
consequence of Fx * F2 e Sa. Second, if Fx G Sa and either F2 G Sa or F2 = o(Fx),
the statement Fx* F2~ m2F1 + mxF2 may be weakened to F1* F2~ axFx + a2F2

for some ax, a2, and it will still retain its power to imply Fx* F2
 e ^a-

Finally, we will provide actual conditions for which Fx* F2 - m2fx + mxF2.
The well-known result of Feller (1971, page 278) states that this holds for
distributions with regularly varying tails. Embrechts and Goldie (1980) show that
if Fx G So, then sup, Fx(t)/F2(t) < oo suffices. In fact, for Fj G Sa, it is sufficient
to have Fx/F2 G RVp for some p. This and a more general condition appear in
Theorem 3.5.

2. Convolution equivalency

We state at the outset that the reader should keep Theorem 2.9 in mind when
considering results 2.5 through 2.8 in this section. Once Theorem 2.9 has been
proved we will restate these in a more precise form. Many of these have been
proven elsewhere, but only after Theorem 2.9 was verified. Our approach is to
work in the other direction.

We start with several lemmas.

LEMMA 2.1. Let Aj{t) be positive functions.
(i) IfA3 <AX< cA2, then Ax + A2 < A3 + A4 implies A2 < AA.
(ii) IfA3 ~ Ax< cA2, thenAx + A2 - A3 + A4 implies A2 ~ A4.
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(iii) axAx + a2A2 ~ bxAx + b2A2 implies ax = bx or

b2-a2

(iv) If Ax < A3, A2 < AA, then Ax + A2~ A3 + A4 implies one of the following

must hold.

A ~ A A ~ A

Ax ~ A3, A4 = o(Ax), or

A2~A4, A3 = o(A2).

PROOF. Straightforward.

LEMMA 2.2. Suppose Fv F2 e La.

(i) (Embrechts and Goldie, 1982) The transforms wy(y) = }*eyuFj(du) have
their singularity at y = a.

(ii) Ifmj = mj(a), then Fx* F2> m2Fx + mxF2.
In particular, if Fx * Fx ~ 2dxFx with dx < oo, then mx < dx.

PROOF, (ii) Although this has been observed by several authors, we repeat it
because it is such a basic result. Write

f ' / 2 F ( t ) F ( d ) + f ' / 2 F^ 1 * ^ ( 0 = r2Fx(t-u)F2(du)+ f(/ F2(t-u)Fx(du) + Fx(t/2)F2(t/2).
0 0

Fatou's lemma gives

rt/2 Fx(t — u) /-°°
liminf / —=—-—F2(du) > / ea"F2(du) = m2.
r-oo 0̂ Fx(t)

 J0
The second term is handled similarly and the third is ignored.

Lemma 2.2(ii) holds for all distributions when irij is replaced with Fj(0) =

Fj[0, oo). In fact, it may be shown that if Fx * F2 ~ F2(0)Fx + F1(0)F2 and

F2 < cFx then Fx e Lo. (See Chistykov (1964) for a proof when Fx = F2.)
Throughout the paper, we will use my = /0°°eauFj{du) whenever Fj e La and

many of our theorems will assume this parameter to be finite. When referring to
distributions F, G or H, the parameter will be denoted m{ = mF), mG or mH.

The next lemma shows that La is closed under convolutions.

LEMMA 2.3. (i) (Embrechts and Goldie, 1980). If Fj e La, then FX*F2<= La.
(ii) Assume \ n > 0 and Y% Xn(F(0))n < oo. / / F e La and / / = EQ ^nF*"-

then for u > 0, H(t - u) < eauH(t). In particular, if a = 0 then H e Lo.
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PROOF, (i) We have simplified slightly the proof by Embrechts and Goldie. Fix

u > 0. For large enough .? and t0 > 2s,

(1 - e)e"uFl(t) < Fx(t - II) < (1 + e)eauF1(t), t > s,

and

(1 - e)ea%{t) < F2(t - v) < (1 + e)emF2(t),

t > t0 and v = u, s or u + s.

Embrechts and Goldie show that for all t > t0,

(2.1) F,* F2(t - u) < (1 + e)eau Ft* F2(t).

Thus,

limsup 1
 ( T^ < e<XU-

Similarly, for t > t0,

- e)eauF~7T2(t) - f~S F^t - u - v)F2{dv)
J

- e)ea»Fl*F2{t) - F^s - u)F2{t - u - s)

e)ea"J^¥2(t)-{\ +

Now, F2 < \/mxFl * F2 by Lemma 2.2(ii). Thus, if m1 = oo, F2 = o(F1 * F2) and
if m^ < oo, then e^F^s) -» 0 as s —> oo. In either case,

liminf F*m i n f H ^ > e ,
F1*F2(t)

w h i c h p r o v e s ( i ) .

( i i ) A p p l y ( 2 . 1 ) r e c u r s i v e l y , w i t h Fx = F, F2 = f * n l . T h u s

F*"(t — M) < (1 + E)eauF*"(t), all n, all / ^ t0.

Hence ^(r - M) < (1 + e)ea"H(t) and

limsup ^ ^ i < , « " .

In case a = 0, then H e L 0 follows because i / is nonincreasing.

Although we have not given sufficient conditions here for H to be in La

(except when a = 0), we will later show that under certain assumptions F e Sa

implies H e Sa. The next lemma, a new result, is the basis for all our later results.
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LEMMA 2.4. Suppose Fj e La and rtij < oo, j = 1,2, 3,4.
(i) / / f\ < F3 and F2 < F4, then F\*F2 + m4F3 + m3F4 < F3 * F4 +

m2Fx + mxF2.
(ii) / / F : ~ F3 W F2 ~ ,F4, ?/ie« Fx * F2 - F3 * F4 + (wi2 - w4)F3 +

PROOF. We will prove only (i). The proof for (ii) uses a double application of (i)
and an appeal to Lemma 2.1(ii).

We may write

(2.2) i W ^ O = f Fx{t - u)F2(du) + f F2(t - u^du)

^t - u)F2{du) - s).

(2.3) ~FjTFA(t) = fF3(t - u)F4(du) + f F4(t - u)F3{du)

S F4(t - u)F3(du) + F4(s)F3(t - s).

For large enough s, F^u) < (1 + e)F3(u) and F2(u) < (1 + e)F4(u), all u > s.
Thus for / > 2s,

(2.4) / ' - ' Fx{t - u)F2(du) + F^F^t - s)

' " J F3(t - u)F2(du) + F3(s)F2(t - *)]

~S F2(t - u)F3{du) + F2(s)F3(t - , ) ]

[ j J F4(t - u)F3(du) + F4(S)F3(t - , ) ] .

Again for large s,

I f eauF.(du) - m. < emin m,-, ; = 1,2,3,4.

Fixing 5, we may choose t large enough so that

enij, i,j = 1 ,2 ,3 ,4 , i ¥=j.

From (2.2), (2.3) and (2.4) we thus have

F1*F2{t) - ( 1 + 2e)(m2F1(0 + mj^t))

< (1 + £)2[F~TF4(t) - ( 1 - 2e)(m4F3(0
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This implies

m F4(t)}

Since e is arbitrary, then

Fx * F2 + m4F3 + m3F4 < F3 * F2 + m2F1 + mxF2.

The power of Lemma 2.4 can be seen in the next three corollaries.

COROLLARY 2.5. IfFl^La,ml< oo andF1 ~ F2, then

FX*F2 ~ F1*F1 + ( w 2 - w 1 ) F 1 and

F2*F2 ~ Fl*Fl +2(m2-ml)F1.

In particular, if Fx * Fr ~ 2dlFl, then F2* F2~ 2(m2 + d1 - m1)F2.

PROOF. The first two relationships are straightforward applications of Lemma
2.4(ii). The third follows immediately from the second.

We see, therefore, that Sa is closed under asymptotic tail equivalency.

COROLLARY 2.6. Let F e La andm = f^eauF(du) < oo.
(i) ThenF*" > m"'2F*F + (n - 2)w""1F> nm"-lF.

(ii) IfF* F < 2dF {F*F> 2dF), then F*n < anF (F*n > anF), where

'nm"-\ ifd=m,

an={ (2d-m)"-m"1 . —r , ifd*m.
2(d - m)

PROOF, (i) By repeated application of Lemma 2.2(ii),

F*n >mF*"-1 + m"-lF

> m2F*"-2 + 2m"~lF

>m"-2F*F +{n - 2)m"~1F

> nm"~lF.

(ii) Assume F* F < 2dF. The proof is by induction and is similar when
F* F > 2dF. Suppose F*n < anf. Then using Lemma 2.4(i) and Lemma 2.1(ii),

F*" + 1 = F*n*F *ZanF*F +(m" - anm)F
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Once we establish that d = w, we will also be able to show that F*" ~ nm"~1F
is equivalent to F £ Sa. (See Corollary 2.11.)

COROLLARY 2.7. SupposeF1 e La, Fl*F1~ 2dxFx and l i m , ^ F2(t)/Fx{t) =
k < oo. Then G = FX*F2~ (m2 + k{2dx - mx))Fx andG e Sa.

PROOF. The proof is valid whether k = 0 or k > 0. Since F1 + F2 ~ (1 + k)Fx,
then by Lemma 2.4(ii),

FX*{FX + F2) - ( 1 + A : ) ^ * ^ +(m2-km1)F1

~ {2dx{\ + k) +{m2- km,))^.

However, we also have Fl*(Fl + F2) = Fx* Fx + G ~ 2d1Fl + G. Applying
L e m m a 2.1(i i ) , G - (m2 + k(2dx - m1))Fl = cFv By C o r o l l a r y 2 .5 , G*G ~
2(mc + c{dx - mx))G. Therefore G e Sa.

The proof of the next lemma follows that of a similar lemma in Chover,
Wainger and Ney (1973b). (See Lemma 2.12.)

LEMMA 2.8. Suppose F e La, F*F - 2dF, d < oc, and m = /<$* eauF(du).

Then for each e > 0 and some Kt,

F*"(t)^Ke(2d- m + e)"~lF{t), alln, allt.

PROOF. For large enough s and /,

() > m - e/4.

Fixing s, we may choose t0 > s so that for t > t0,

F*F{t) ft-s F(t - u) ^ J ^ , (s F(t - u) ^ J x , F(s)F(t - 5)
—=—^— -̂ = / —= F(du) + I — ^ F(du) + — _

F{t) Jo F{t) Jo Fit) Fit)
< 2d + e/4.

Thus /o'"s F{t - u)F{du) + F{s)F{t - s) < {Id - m + e/2)F{t), t ^ t0.
Choose

Kc = max — sup —^r
2..._F(t-s) HO)

> 1.
L F{t) F(t0)

The conclusion obviously holds for n = 1. We continue by induction. For t ^ t0,

^ \ < Kf(2d -m + e)"F{t).
)
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For / > t0,

F*n+\t)

= ['-' p*"(t _ u)F(du) + F*"(s)F(t -s) + f F(t - u)F*"(du)
JQ o

Ke(2d -m + e )"" 1 ^ ' " 1 F(t - u)F(du) + F(s)F(t - *)] + m"F(t - s)

-m + e)"-\2d -m + e/2) + if,(c/2)m"] F(t)

< Kt(2d-m + e)"F(t).

We come now to our first major result, a new proof of a theorem by Chover,

Wainger and Ney (1973a).

THEOREM 2.9. If F e Sa, ftew f* F ~ 2mF where m = j™eauF{du).

PROOF. Suppose a > 0 and define

Fo(/) =

It is easy to show that F e Sa implies Fo e So (see Embrechts and Goldie (1982);
they also show that the converse is not true), that mo(0) = mF(a) = m and that
Fo * Fo ~ 2dF0. From these we see that it suffices to prove the theorem for the
case a = 0.

From Lemma 2.2, we know that d > m. For A < 1/m, define

Hx = f \"F*\ ^

By Lemma 2.3(ii), Hx G LO. If A < 1/(2 rf - m), then Corollary 2.6(ii) and
Lemma 2.8 combine with dominated convergence to give

(2.5) Hx~ ^J^-mY^m"
o 2{d-m)

F=
-m\)(\-{2d-m)\) '

(This is valid even when d = m.) On the other hand, by Fatou's Lemma,
A > l/(2d - m) implies

(2,) " - " ^ > f

Let

Ao = sup( A: / /x ~ kxF ior some &x < oo}.
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Since kx must increase with X, it is clear from (2.5) and (2.6) that Xo =
1/(2d - m) and that for all X < Xo, Hx ~ kxF for some finite kx.

Let

Xx = sup{X: HX*HX ~ 2dxHx for some dx < oo}.

By Corollary 2.5, dx = mx + kx{d - m) for all X < Xo. Thus Xx > Xo. Suppose
Xx > Xo. (This requires d > m.) Let n < Xo < X < X{. Then H^ - k^F = o(Hx).
Thus,

0 0

But by Corollary 2.7, H^H^- m^H^ a contradiction since w^ < X/(X - /x).
Hence Xx = Xo.

Continue to assume d > m and let X 0 < i ' < J u < X < l / w . Since H^ =

oiH^H^) < H^WX < (X/(X - ^ ) ) ^ x , it is clear that H^ = o(Hx) and H^* Hx

~ (X/(X -jx))Hx. Similarly, Hv* Hx - (X/(X - v))Hx and i/,, * H^ -

,- Applying Lemma 2.4(ii),

And this requires m^m,, - {\i/{\i - v^m^ + (f/C)11 ~ ' ' ) ) (V(^ ~ ")) = 0.
But this is certainly not true for arbitrary X. Therefore we must conclude that

d = m.

The proof by Chover, Wainger and Ney uses Banach algebra elements and
relations defined by asymptotic tails. It is similar to our proof in that it also
shows certain relationships must hold in a range defined by m. However, it uses
complex valued transforms and Cauchy's theorem. Additionally, they prove part
of our Theorem 2.13 before proving d = m. Embrechts (1983) gives another
theorem similar to Theorem 2.9, except that it refers to the probabilities /„ = F{ n}
of a distribution with mass on the integers. His proof relies on a real analytic
theorem by Rudin (1973J.

(Because F* F ~ 2dF implies d = mF(a) when F e La, one might also sus-
pect that F*n ~ dnF is equally sufficient. The answer to this ultimately depends
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on whether the bounds in Corollary 2.6(ii) are in fact sharp. For example,
F*" ~ dnF implies F* F < 2dF for some d, and this alone is sufficient to prove,
for Theorem 2.9,

V J ^ ^o = " I = •
Id - m m

The remaining inequality, however, can only be resolved if one knows that
T^F(t) O J . ,. ,. F*»(t) (2d-m)" -m"

lim sup—_, = Id implies Um sup _ / = - — , , — :
«-» F F{t) <-«, F F(t) 2{d-m)

Knowing that d — m, we may revise several of our earlier results, crediting
those who have previously stated them in this form.

COROLLARY 2.10 (EMBRECHTS AND GOLDIE, 1982). If Fx e Sa andF2 ~ kFx for
some k > 0, then F2 e Sa and FX*F2& Sa. IfF2 = o(F{), then Fl*F2& Sa.

PROOF. Corollaries 2.5 and 2.7 and Theorem 2.9.

COROLLARY 2.11 (CHOVER, WAINGER AND NEY, 1973a, b; EMBRECHTS AND

GOLDIE, 1982). The following are equivalent.

(ii) F G La andF*" - nmn~lFfor some {hence all) n.
(iii) F G La andF*" G Sa for some (hence all) n.

PROOF. If F e Sa, then F e La and F*F ~ 2mF from Theorem 2.9. By
Corollary 2.6, F*n ~ nmnlF. The remainder of the proof is virtually the same as
that for Theorem 2.13 and Corollary 2.14, which we provide later.

The remarks following Theorem 2.13 apply equally well to Corollary 2.11,
which is a special case.

LEMMA 2.12 (CHOVER, WAINGER AND NEY, 1973b). If F & Sa, then for each
e > 0 and some Ke, F*"(t) < Ke(m + e)"-lF(t) alln, all t.

PROOF. Lemma 2.8 and Theorem 2.9.

The next theorem both strengthens and generalizes the known results for
distributions of random sums.

THEOREM 2.13. Assume F e La, m = f™eauF(du). Let {Xn} be a sequence of
nonnegative coefficients such that Xy > 0 for some j > 1 and L* \n(m + E)" < oo
for some e > 0. Denote H = Y,™ XnF*". The following are equivalent.

(i) F G Sa.
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(ii) H ~ cFforc = T,?nXnm
nl.

( i i i ) / / e Sa and F * o(H).

PROOF. That (i) implies (ii) follows by dominated convergence using Corollary
2.11 and Lemma 2.12. By Corollary 2.5, it immediately follows that (i) implies
(iii).

To show that (ii) implies (i) we use Corollary 2.6(i). Assume Xj > 0 for some
j > 2. Then F*J>jmjlF and

<cF- £ n\nm"-lF

T h u s F*J ~ jmj~lF. A l s o f r o m C o r o l l a r y 2 . 6 ( i i ) F*J>mJ~2F*F +

(j - l)mJ~lF, so that by Lemma 2.1(i,ii), F*F < 2mF +m2jF*J - jmF ~
2mF. This shows F e Sa, which is (i).

To show that (iii) implies (i), we first note that according to Corollary 2.6,
p*n > ^ " - i ^ f o r a i i „. Hence H > (EJ n\nm"'l)F = cf. However, F ¥= o(H),
so by Corollary 3.2(i) in the next section, F e Sa.

In case a = 0, the assumption F e L 0 may be replaced by m = F(0) (and
F e Soby F* F ~ 2mF, similarly for H). Indeed, as remarked following Lemma
2.2, F e Lo is a consequence of F * F ~ 2wF(and H e Lo of/ /*/ / ~ 2/7(0)//).
The same remark allows us to use Corollary 2.6(i) to show (ii) implies (i). As
Embrechts and Goldie (1982) point out, the requirement F £ La when a > 0
seems to be related to the unsolved question of whether F * F ~ 2dF actually
implies F e La for some a.

Chover, Wainger and Ney (1973) have already shown that (i) implies (ii) in
Theorem 2.13, while Embrechts and Goldie (1982) and Embrechts, Goldie and
Veraverbeke (1979) proved the equivalency of all three statements for the special
cases where the Xn are Poisson and geometric probabilities. We now show that for
these cases and for the case H = F*n the assumption F # o(H) in (iii) is
unnecessary.

COROLLARY 2.14. Suppose F e La, H = £ £ XnF*" and H e Sa. Then each of
the following implies F e Sa.

(i)limn^0Osup(XJ!+1)/\n < l/m.
(ii) For q = mH(F(0)/H(0)), Z.% Xn{q + e)" < 00 for some e > 0.
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PROOF. For both conditions, the proof relies on Theorem 2.13 and the demon-
stration that F =* o{H).

(i) Clearly, £~Xn(m + e)n < oo for some e > 0, as required. Assume F =
o(H). Then if F < eH and F*n < eknH, Lemma 2.4(i) yields,

F*"^1 <F*n + l + 2e2knmHH

< e2knH*H + m"F+mF*"

< e[m" + mkn + 2emHkn] H,

since H*H ~ 2mHH. Hence, F = o(H) impUes F*" = o(H) for all n. Modify-
ing a finite number of the A,,, therefore, will not change the assumption ffeSo.
We thus assume that Xo = 0 and (m + e)Xn+1 < Xn for all n > 1. From Corollary
2.7, F=o(H) implies H*F ~ mH. Thus

+ e

-H.
m + e

This contradiction demonstrates that F * o(H).
(ii) We assume without any loss that F(0) = 1, Xo = 0 and £J° Xn = 1 (so that

/7(0) = 1, also). Since F(t) < F*"(t), then for all t, F(t) < I?\nF*"(t) = ^
and F*"(t) < flr*"(0. By Lemma 2.12, applied to H, F*"(t) < H*n{t)
Ke(mH + e)"-1!}^). If we further assume F = o(H), then, as above, F*" = o(
and dominated convergence yields

t-+x H(t) i "'-00 H(t)

a contradiction. Thus F # o(H).

3. Closure and factorization

This section primarily improves results in Embrechts and Goldie (1980) for
subexponential distributions and generalizes them to include exponential tail
distributions. We investigate two properties for distributions F} e Sa,

closure (under *): Fl* F2 e Sa,

factorization: Fx* F2 ~ m2Fl + m1F2.
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We show in Theorem 3.4, as did Embrechts and Goldie for So, that these
properties are equivalent when both Fx, F2 G Sa. Although we still cannot verify
that Sa is in fact closed under convolutions, we can provide fairly general
conditions on Fx and F2 for which the property holds.

We start with a useful lemma.

LEMMA 3.1. Suppose Fx, F2 e La, F3 G Sa. If Fx < F3, F2 < F3 and F3 <

kFx * F2for some k < oo, then each of the following holds.
7T

(ii)FX*F2 - m2Fx + mxF2.
(iii) At least one of Fx, F2 is in Sa. The other, if not in Sa, has an asymptotically

negligible tail.

PROOF. We obtain (ii) using first Lemma 2.4(i), Fx * F2 + 2m3F3 < F3* F3 +
(m2F1 + m1F2). Thus, by Lemma 2.1(i), Fl* F2 < (m2F1 + m1F2). And by
Lemma 2.2(ii), this is sufficient for Fx* F2 ~ m2F1 + mYF2. We can also show
Fx* F2 ~ m2Fx + mxf2 < (m2 + mx)F3 and F3 < kx(Fx* F2)*

2 for kx =
k/Fx(0)F2(0). Therefore, a repeat argument gives (Fx* FJ*2 ~ 2mxm2Fx* F2.
That is, FX*F2 e Sa.

Because of the equivalency, m2Fx + mxF2 G Sa also. Therefore,

4mxm2ym2Fx + mxF2) ~ m\Fx* Fx + 2mxm2Fx* F2 +m\F2*F2

— 2mxm2ym2Fx + mxF2j + m\Fx * Fx + m\F2 * F2.

This implies

2mxm\Fx + 2m2m\F2 ~ m\Fx* Fx + m\F2 * F2.

But each term on the left is dominated by the corresponding term on the right,
asymptotically. Thus by Lemma 2.1(iv), either 2mxFx ~ Fx* Fx or 2m2F2

~ F2 * F2, and if not both, then one set of terms must be negligible with respect to
the other. In other words, we must have one of

F X G 5 O , F 2 G S a ,

Fx^Sa, F2*F2 =o{Fl), or

This immediately gives the following corollary which provides one way to
determine if a distribution is in Sa.

COROLLARY 3.2. Suppose Fx G Sa and F2 e La.
(i) IfF2 < Fj, then FX*F2& Sa. IfF2 + o(Fx) also, then F2 G Sa.

(ii) IfFx < F2, then FX*F2<E Sa if and only if F2 G Sa.
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P R O O F , (i) Follows from Lemma 3.1 with F3 = Fv

(ii) Suppose F2 e Sa. Then F1 * F2 e Sa by (i).

If instead we assume F1* F2& Sa, then using Lemma 3.1 with F3 = F1* F2, we

must have F2 e Sa since F2 =£ o(Fl).

We have already used Corollary 3.2 in the proof of Theorem 2.13.

The next lemma is interesting for its simplicity.

LEMMA 3.3. SupposeFx, F2 e Sa. Let G = Fl* F2, H = m2Fx + mxF2. Then

H*H ~ 1mxm2G +2m1m2H,

H*G ~ 4mxm2G —mxm2H

and

G*G ~ Amxm2G —1mxm2li.

P R O O F . Straightforward application of Fj* Fj - 2mjFj and Lemma 2.4.

We now provide the primary theorem for this section. Under the assumption

that Fv F2e So, Embrechts and Goldie (1980) proved a similar theorem, namely

that (i), (ii) and (iv) are equivalent. In addition to proving the theorem for all

classes Sa, our contribution has been to weaken the assumptions and to weaken

(ii) to (v).

THEOREM 3.4. Suppose Fv F2 e La, G = Fx* F2, H = m2Fl + mYF2. Then the

following are equivalent.

(i)GeS,
(ii) G ~ H, with (vi) below.

(iii) H e Sa.

(iv) a1F1 + a2F2 e Sa for some (hence all) ax, a2 > 0.

(v) G ~ a1Fl + a2F2 for some ax, a2, with (vi) below.

Statements (ii) and (v) refer to

(vi) At least one of F{ and F2 is in Sa. The other, if not in Sa, has an

asymptotically negligible tail.

P R O O F . Note that (ii) implies (v) because (ii) is a special case of (v).

That (i) implies (ii) (and (v)) follows immediately from Lemma 3.1.

On the other hand (ii) implies (i), because if Fx e Sa and F2 = o{Fx), then

Fx* F2 e Sa by Corollary 2.10. And if Fx, F2 e Sa then by Lemma 3.3, G*G ~

Amxm2G -2mlm2H ~ 2mYm2G.
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Furthermore, (i) implies (iv) (with "all") when Fu F2 e Sa, since

(axFx + a2F2)*
2 = alF~TYx + 2axa2G+a2

2F~^T2

~ 2(a1m1 + a2m2){axFl + a2f2).

When Fx e Sa, F2 = o(Fx), (iv) holds because axFx + a2F2 ~ axFx. To show that
(iv) (with "some") implies (i), let c = m&x{ax/m2, a2/mx) and K = axFx + a2F2.
Then axFx < K, a2F2 < K and K < cH < cG. Applying Lemma 3.1, it follows
that K G Sa implies G e Sa. Statement (hi) is equivalent to (i) because (iv) is.

It remains only to show that (v) implies (i). Assume without loss that Fx e Sa.
Note first that if F2 ~ kFv then G e Sa by Corollary 2.10. So we assume
F2 •*• kF1 for any k (finite, zero or infinite) and we must also assume F2 e Sa,
since (vi) holds. Note that m1F1 + m1F2 < a1F1 + a2F2. Since (ii) implies (i), the
result is obvious if ax = m2, a2 = mx. If a2 < m,, then by Lemma 2.1(i),
m2F1 + (m1 — a2)F2 < aiFv which requires ax > m2- Thus

F2 < (al - m2)/(m1 - a2)Fx.

By Corollary 3.2(i), G e 5a. (Note that in fact a^ + a2F2 ~ G ~ m2Fl + mxf2.
This implies ax = m2, a2 = ml since Fl and F2 are not asymptotically equivalent
(Lemma 2.1(iii)).) The case ax < m2 is handled similarly. On the other hand, we
intend to show that a.\a2 = m1m2 and thus no other cases are possible.

Since G ~ a1F1 + a2F2 and Fj* F, - inijFj, then from Lemma 2.4(ii),
(3-1) _

G*G ~alFl*Fl + 2axa2G +a\F2* F2 + 2(mvm2 - alm1 - a2m2)G

~ 2al(ala2 + mlm2 - a2m2)Fx + 2a2(ala2 + mlm2 - a1ml)F2.

By Lemma 3.3, another asymptotic expression for G * G is

(3.2) G*G ~ 4m1m1G -2mlm2H

- 2mlm2(2al - m2)Fx + 2mlm2(2a2 - m1)F2.

Since Fl and F2 are not asymptotically equivalent, by Lemma 2.1(iii) the
respective coefficients in (3.1) and (3.2) equal. That is,

al(ala2 + mxm2 — a2m2) = mlm2(2al - m2)

and

a2{axa2 + mxm2 — axmx) = mxm2(2a1 — mx).

These reduce to (ax - m2)(axa2 - mxm2) = 0 and (a2 — w1)(a1a2 - mxm2) =

0, requiring at least axa2 = mxm2 and justifying our argument above.

For Fx, F2 e La, Theorem 3.4 characterizes the case G e Sa and the case
axFx + a2F2 e Sa. It does not however characterize the case G ~ H without
additional assumptions. This suggests there may be examples for which Fx * F2 is
not in Sa, yet we still have Fx* F2 ~ m2Fx + mxF2 and Fx, F2 e La.
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In Corollary 3.2 we have given a condition for F1 * F2 to be in Sa which is
easily checked. We will now give a more general condition.

THEOREM 3.5. Suppose F1,F2eSa. Define b(t) = F1(t)/F2(t). If for some
xx > 1 > x0 > 0, sup, supXo < x < Xi b(xt)/b(t) < oo, then Fx * F2 e Sa. In particu-
lar, ifb(t) G RVp for any p, then Fl* F2 e Sa.

PROOF. The condition on b is called the R-O variation property (Seneta (1976),
Appendix). Since x0 < 1 < xv the values of x0 and xx may be extended
arbitrarily. We set K = sup,sup1 / 2 < x < 2b(xt) /b( t) .

Thus, for 0 < u < t/2,

FiO ~ u) ; F2(t - u)

F2(t)

Since F2 e 5a, then F2* F2 ~ 2m2F2so that

E^-ui ^lim r^-o
F ( ? ) •'0 f^oo [ F ( f ) xF2(

(and lim,_00 F2(t/2)/F2(t) = 0. Therefore, by dominated convergence

/v/2 ^ ( r ~ u) . ,
hm / F2(J») = m2.
r^=c •'o ^i(0

We also have

And by a similar argument

iF2(t-u)

Thus fj * F2(0 ~ m^it) + m^F^t) and ^ * F2 G ^

With similar conditions, one may easily discuss tails of finitely many convolu-
tions. Results for infinite convolutions are forthcoming in another paper.

4. Conclusion

Except for Theorem 3.5, all of our results relied on the Lemmas 2.1-2.4 and
2.8. These were the only results which required analytic proofs. This has made it
possible to generalize results and, in particular to obtain a real analytic proof of
the basic result, Theorem 2.9. Our method, however, relies heavily on the
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monotonicity of the distribution tails. Embrechts (1983) used the work of Rudin
(1973) to get a real analytic proof when / is the atomic density of a lattice
distribution F. Letting /„ = F{n} and /„*/„ = F*F{n}, then Embrechts' result
is

If /„ ~ Rfn+l and / „ * / „ - 2dfn, then d = f R"fn.
o

However, it is also apparent that /„ = F(n) — F(n + 1) ~ (1 — R)F(n). Thus,
for R < 1, Embrechts' result is a special case of ours.

Chover, Wainger and Ney (1973a) proved the lattice result using a Banach
algebra technique. Their technique also gave a result for the density / of
absolutely continuous F, namely:

I f / ( O ~ eauf(t + u) and f * f ( t ) ~ 2</ / ( f ) , then d= [°° eauf(u)du.

This is different from Theorem 2.9 for the density case, because F e La is
necessary but not sufficient for f(t) ~ eauf(t + u). We have not yet obtained a
real analytic proof for the density version.
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