Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-19T20:47:16.662Z Has data issue: false hasContentIssue false

Supramolecular assemblies of lignin into nano- and microparticles

Published online by Cambridge University Press:  10 May 2017

Mariko Ago
Affiliation:
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Finland; mariko.ago@aalto.fi
Blaise L. Tardy
Affiliation:
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Finland; blaise.tardy@aalto.fi
Ling Wang
Affiliation:
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Finland; ling.wang@aalto.fi
Jiaqi Guo
Affiliation:
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Finland; jiaqi.guo@aalto.fi
Alexey Khakalo
Affiliation:
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Finland; alexey.khakalo@aalto.fi
Orlando J. Rojas
Affiliation:
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Finland; orlando.rojas@aalto.fi
Get access

Abstract

Among the most abundant biopolymers in the biosphere, lignin represents an untapped opportunity to create novel bioproducts. In this article, we discuss possibilities to synthesize nano- and microparticles by harnessing lignin’s inherent tendency to associate and to develop new material compositions and functions by controlling its capacity to assemble into supramolecular structures. Because lignin is biodegradable, antimicrobial, antioxidative, and carbon neutral, inexpensive industrial lignin streams could generate value-added particulate materials that preserve the structure, composition, and colloidal features inherent to this macromolecule. We present available routes for synthesis or isolation of lignin particles, including antisolvent and aerosol processing. Metallic and polymeric lignin particle hybrids for magnetic, antibacterial, catalytic, photonic, and other applications are also discussed. Overall, the facile formation of nano- and microparticles from lignins is expected to open new pathways toward future material development.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Weng, J.K., Chapple, C., New Phytol. 187, 273 (2010).CrossRefGoogle Scholar
Uzal, E.N., Gómez Ros, L.V., Pomar, F., Bernal, M.A., Paradela, A., Albar, J.P., Ros Barceló, A., Physiol. Plant. 135, 196 (2009).CrossRefGoogle Scholar
Toledano, A., García, A., Mondragon, I., Labidi, J., Sep. Purif. Technol. 71, 38 (2010).CrossRefGoogle Scholar
Doherty, W.O., Mousavioun, P., Fellows, C.M., Ind. Crops Prod. 33, 259 (2011).CrossRefGoogle Scholar
Norgren, M., Edlund, H., Curr. Opin. Colloid Interface Sci. 19, 409 (2014).CrossRefGoogle Scholar
Mendu, V., Harman-Ware, A.E., Crocker, M., Jae, J., Stork, J., Morton, S., Placido, A., Huber, G., DeBolt, S., Biotechnol. Biofuels 4, 1 (2011).CrossRefGoogle Scholar
Mendu, V., Shearin, T., Campbell, J.E., Stork, J., Jae, J., Crocker, M., Huber, G., DeBolt, S., Proc. Natl. Acad. Sci. U.S.A. 109, 4014 (2012).CrossRefGoogle Scholar
Culbertson, C., Treasure, T., Venditti, R., Jameel, H., Gonzalez, R., Nord. Pulp Pap. Res. J. 31, 30 (2016).CrossRefGoogle Scholar
Laurichesse, S., Avérous, L., Prog. Polym. Sci. 39, 1266 (2014).CrossRefGoogle Scholar
Pandey, M.P., Kim, C.S., Chem. Eng. Technol. 34, 29 (2011).CrossRefGoogle Scholar
Thakur, V.K., Thakur, M.K., Int. J. Biol. Macromol. 72, 834 (2015).CrossRefGoogle Scholar
Stark, W., Stoessel, P., Wohlleben, W., Hafner, A., Chem. Soc. Rev. 44, 5793 (2015).CrossRefGoogle Scholar
Rao, J.P., Geckeler, K.E., Prog. Polym. Sci. 36, 887 (2011).CrossRefGoogle Scholar
Guo, J., Tardy, B.L., Christofferson, A.J., Dai, Y., Richardson, J.J., Zhu, W., Hu, M., Ju, Y., Cui, J., Dagastine, R.R., Yarovsky, I., Caruso, F., Nat. Nanotechnol. 11, 1105 (2016).CrossRefGoogle Scholar
Campos, E., Branquinho, J., Carreira, A.S., Carvalho, A., Coimbra, P., Ferreira, P., Gil, M., Eur. Polym. J. 49, 2005 (2013).CrossRefGoogle Scholar
Zeng, M., Ximenes, E., Ladisch, M.R., Mosier, N.S., Vermerris, W., Huang, C.P., Sherman, D.M., Biotechnol. Bioeng. 109, 390 (2012).CrossRefGoogle Scholar
Zeng, M., Ximenes, E., Ladisch, M.R., Mosier, N.S., Vermerris, W., Huang, C.P., Sherman, D.M., Biotechnol. Bioeng. 109, 398 (2012).CrossRefGoogle Scholar
Xiao, L.-P., Sun, Z.-J., Shi, Z.-J., Xu, F., Sun, R.-C., BioResources 6, 1576 (2011).CrossRefGoogle Scholar
Araya, F., Troncoso, E., Mendonça, R.T., Freer, J., Biotechnol. Bioeng. 112, 1783 (2015).CrossRefGoogle Scholar
Araya, F., Tronscoso, E., Mendonca, R.T., Freer, J., Rencoret, J., Del Rio, J.C., J. Chil. Chem. Soc. 60, 2954 (2015).CrossRefGoogle Scholar
Donohoe, B.S., Decker, S.R., Tucker, M.P., Himmel, M.E., Vinzant, T.B., Biotechnol. Bioeng. 101, 913 (2008).CrossRefGoogle Scholar
Castillo, R.D.P., Araya, J., Troncoso, E., Vinet, S., Freer, J., Anal. Chim. Acta 866, 10 (2015).CrossRefGoogle Scholar
Sannigrahi, P., Kim, D.H., Jung, S., Ragauskas, A., Energy Environ. Sci. 4, 1306 (2011).CrossRefGoogle Scholar
You, T., Zhang, L., Guo, S., Shao, L., Xu, F., J. Agric. Food Chem. 63, 10747 (2015).CrossRefGoogle Scholar
Wang, W., Zhuang, X., Yuan, Z., Qi, W., Yu, Q., Wang, Q., Biomed Res. Int. 2016, 7 (2016).Google Scholar
Li, H., Pu, Y., Kumar, R., Ragauskas, A.J., Wyman, C.E., Biotechnol. Bioeng. 111, 485 (2014).CrossRefGoogle Scholar
Ji, Z., Zhang, X., Ling, Z., Zhou, X., Ramaswamy, S., Xu, F., Biotechnol. Biofuels 8, 1 (2015).CrossRefGoogle Scholar
Selig, M.J., Viamajala, S., Decker, S.R., Tucker, M.P., Himmel, M.E., Vinzant, T.B., Biotechnol. Prog. 23, 1333 (2007).CrossRefGoogle Scholar
Norgren, M., Edlund, H., Wågberg, L., Langmuir 18, 2859 (2002).CrossRefGoogle Scholar
Guerra, A., Gaspar, A.R., Contreras, S., Lucia, L.A., Crestini, C., Argyropoulos, D.S., Phytochemistry 68, 2570 (2007).CrossRefGoogle Scholar
Mičič, M., Jeremič, M., Radotič, K., Mavers, M., Leblanc, R.M., Scanning 22, 288 (2000).CrossRefGoogle Scholar
Qian, Y., Deng, Y., Qiu, X., Li, H., Yang, D., Green Chem. 16, 2156 (2014).CrossRefGoogle Scholar
Frangville, C., Rutkevičius, M., Richter, A.P., Velev, O.D., Stoyanov, S.D., Paunov, V.N., ChemPhysChem 13, 4235 (2012).CrossRefGoogle Scholar
Lievonen, M., Valle-Delgado, J.J., Mattinen, M.-L., Hult, E.-L., Lintinen, K., Kostiainen, M.A., Paananen, A., Szilvay, G.R., Setälä, H., Österberg, M., Green Chem. 18, 1416 (2016).CrossRefGoogle Scholar
Sarkanen, S., Teller, D.C., Stevens, C.R., McCarthy, J.L., Macromolecules 17, 2588 (1984).CrossRefGoogle Scholar
Wei, Z., Yang, Y., Yang, R., Wang, C., Green Chem. 14, 3230 (2012).CrossRefGoogle Scholar
El-Zawawy, W.K., Ibrahim, M.M., Belgacem, M.N., Dufresne, A., Mater. Chem. Phys. 131, 348 (2011).CrossRefGoogle Scholar
Moreva, Y.L., Alekseeva, N., Chernoberezhskii, Y.M., Russ. J. Appl. Chem. 83, 1281 (2010).CrossRefGoogle Scholar
Kannangara, M., Marinova, M., Fradette, L., Paris, J., Chem. Eng. Res. Des. 105, 94 (2016).CrossRefGoogle Scholar
Gilca, I.A., Popa, V.I., Crestini, C., Ultrason. Sonochem. 23, 369 (2015).CrossRefGoogle Scholar
Nair, S.S., Sharma, S., Pu, Y., Sun, Q., Pan, S., Zhu, J.Y., Deng, Y., Ragauskas, A.J., ChemSusChem 7, 3513 (2014).CrossRefGoogle Scholar
Gilca, I.A., Ghitescu, R.E., Puitel, A.C., Popa, V.I., Iran. Polym. J. 23, 355 (2014).CrossRefGoogle Scholar
Gîlcă, I.-A., Popa, V.I., Cell. Chem. Technol. 47, 239 (2013).Google Scholar
Silmore, K.S., Gupta, C., Washburn, N.R., J. Colloid Interface Sci. 466, 91 (2016).CrossRefGoogle Scholar
Deng, Y., Zhao, H., Qian, Y., , L., Wang, B., Qiu, X., Ind. Crops Prod. 87, 191 (2016).CrossRefGoogle Scholar
Yang, W., Kenny, J.M., Puglia, D., Ind. Crops Prod. 74, 348 (2015).CrossRefGoogle Scholar
Yang, W., Dominici, F., Fortunati, E., Kenny, J.M., Puglia, D., Ind. Crops Prod. 77, 833 (2015).CrossRefGoogle Scholar
Yang, W., Owczarek, J.S., Fortunati, E., Kozanecki, M., Mazzaglia, A., Balestra, G.M., Kenny, J.M., Torre, L., Puglia, D., Ind. Crops Prod. 94, 800 (2016).CrossRefGoogle Scholar
Richter, A.P., Bharti, B., Armstrong, H.B., Brown, J.S., Plemmons, D., Paunov, V.N., Stoyanov, S.D., Velev, O.D., Langmuir 32, 6468 (2016).CrossRefGoogle Scholar
Shikinaka, K., Fujii, N., Egashira, S., Murakami, Y., Nakamura, M., Otsuka, Y., Ohara, S., Shigehara, K., Green Chem. 12, 1914 (2010).CrossRefGoogle Scholar
Barakat, A., Gaillard, C., Lairez, D., Saulnier, L., Chabbert, B., Cathala, B., Biomacromolecules 9, 487 (2008).CrossRefGoogle Scholar
Ago, M., Huan, S., Borghei, M., Raula, J., Kauppinen, E.I., Rojas, O.J., ACS Appl. Mater. Interfaces 8, 23302 (2016).CrossRefGoogle Scholar
Chen, F., Liu, W., Seyed Shahabadi, S.I., Xu, J., Lu, X., ACS Sustain. Chem. Eng. 4, 4997 (2016).CrossRefGoogle Scholar
Xu, Y., Li, K., Zhang, M., Colloids Surf. A 301, 255 (2007).CrossRefGoogle Scholar
Saidane, D., Barbe, J.-C., Birot, M., Deleuze, H., J. Appl. Polym. Sci. 116, 1184 (2010).CrossRefGoogle Scholar
Popa, V.I., Capraru, A.-M., Grama, S., Malutan, T., Cell. Chem. Technol. 45, 221 (2011).Google Scholar
Saidane, D., Barbe, J.C., Birot, M., Deleuze, H., J. Appl. Polym. Sci. 128, 424 (2013).CrossRefGoogle Scholar
Yearla, S.R., Padmasree, K., J. Exp. Nanosci. 11, 289 (2016).CrossRefGoogle Scholar
Myint, A.A., Lee, H.W., Seo, B., Son, W.-S., Yoon, J., Yoon, T.J., Park, H.J., Yu, J., Yoon, J., Lee, Y.-W., Green Chem. 18, 2129 (2016).CrossRefGoogle Scholar
Rudakova, I.S., Molodkina, L.M., Chernoberezhskii, Y.M., Dyagileva, A.B., Colloid J. 69, 675 (2007).CrossRefGoogle Scholar
Gevorkyants, T.D., Chernoberezhskii, Y.M., Lotentsson, A.V., Colloid J. 74, 751 (2012).CrossRefGoogle Scholar
Sarkanen, S., Teller, D.C., Abramowski, E., McCarthy, J.L., Macromolecules 15, 1098 (1982).CrossRefGoogle Scholar
Richter, A.P., Brown, J.S., Bharti, B., Wang, A., Gangwal, S., Houck, K., Hubal, E.A.C., Paunov, V.N., Stoyanov, S.D., Velev, O.D., Nat. Nanotechnol. 10, 817 (2015).CrossRefGoogle Scholar
Rak, M.J., Friscic, T., Moores, A., RSC Adv. 6, 58365 (2016).CrossRefGoogle Scholar
Zhong, J.-F., Xu, L., Qin, X.-L., J. Compos. Mater. 49, 2329 (2015).CrossRefGoogle Scholar
Gutiérrez-Hernández, J.M., Escalante, A., Murillo-Vázquez, R.N., Delgado, E., González, F.J., Toríz, G., J. Photochem. Photobiol. B 163, 156 (2016).CrossRefGoogle Scholar
Chen, X., Kuo, D.-H., Lu, D., Hou, Y., Kuo, Y.-R., Microporous Mesoporous Mater. 223, 145 (2016).CrossRefGoogle Scholar
Qin, H., Kang, S., Wang, Y., Liu, H., Ni, Z., Huang, Y., Li, Y., Li, X., ACS Sustain. Chem. Eng. 4, 1240 (2016).CrossRefGoogle Scholar
Lintinen, K., Latikka, M., Sipponen, M.H., Ras, R.H., Österberg, M., Kostiainen, M.A., RSC Adv. 6, 31790 (2016).CrossRefGoogle Scholar
Hasegawa, I., Fujii, Y., Yamada, K., Kariya, C., Takayama, T., J. Appl. Polym. Sci. 73, 1321 (1999).3.0.CO;2-0>CrossRefGoogle Scholar
Qu, Y., Tian, Y., Zou, B., Zhang, J., Zheng, Y., Wang, L., Li, Y., Rong, C., Wang, Z., Bioresour. Technol. 101, 8402 (2010).CrossRefGoogle Scholar
Xiong, W., Yang, D., Zhong, R., Li, Y., Zhou, H., Qiu, X., Ind. Crops Prod. 74, 285 (2015).CrossRefGoogle Scholar
Zhang, X., Zhao, Z., Ran, G., Liu, Y., Liu, S., Zhou, B., Wang, Z., Powder Technol. 246, 664 (2013).CrossRefGoogle Scholar
Wang, J., Wu, B., Li, S., Sinawang, G., Wang, X., He, Y., ACS Sustain. Chem. Eng. 4, 4036 (2016).CrossRefGoogle Scholar
Burg, R.W., Miller, B.M., Baker, E.E., Birnbaum, J., Currie, S.A., Hartman, R., Kong, Y.-L., Monaghan, R., Olson, G., Putter, I., Tunac, J.B., Wallick, H., Stapley, E.O., Oiwa, R., Ōmura, S., Antimicrob. Agents Chemother. 15, 361 (1979).CrossRefGoogle Scholar
Kwak, H.W., Shin, M., Yun, H., Lee, K.H., Int. J. Mol. Sci. 17, 1466 (2016).CrossRefGoogle Scholar
Park, S., Kim, S.H., Kim, J.H., Yu, H., Kim, H.J., Yang, Y.-H., Kim, H., Kim, Y.H., Ha, S.H., Lee, S.H., J. Mol. Catal. B Enzym. 119, 33 (2015).CrossRefGoogle Scholar
Shimada, T., Hata, T., Kijima, M., ACS Sustain. Chem. Eng. 3, 1690 (2015).CrossRefGoogle Scholar
Borisenkov, M.F., Karmanov, A.P., Kocheva, L.S., Markov, P.A., Istomina, E.I., Bakutova, L.A., Litvinets, S.G., Martinson, E.A., Durnev, E.A., Vityazev, F.V., Popov, S.V., Int. J. Polym. Mater. Polym. Biomater. 65, 433 (2016).CrossRefGoogle Scholar
Zhang, K., Xu, Y., Hua, X., Han, H., Wang, J., Wang, J., Liu, Y., Liu, Z., Biochem. Eng. J. 41, 251 (2008).CrossRefGoogle Scholar
Li, Z., Ge, Y., Wan, L., J. Hazard. Mater. 285, 77 (2015).CrossRefGoogle Scholar
Demirbas, A., J. Hazard. Mater. 109, 221 (2004).CrossRefGoogle Scholar
Harmita, H., Karthikeyan, K., Pan, X., Bioresour. Technol. 100, 6183 (2009).CrossRefGoogle Scholar
Šćiban, M.B., Klašnja, M.T., Antov, M.G., Ecol. Eng. 37, 2092 (2011).CrossRefGoogle Scholar
Krachler, R., von der Kammer, F., Jirsa, F., Süphandag, A., Krachler, R.F., Plessl, C., Vogt, M., Keppler, B.K., Hofmann, T., Global Biogeochem. Cycles 26, GB3024 (2012).CrossRefGoogle Scholar
Huang, Y.L., Fu, R.L., Huang, Z.K., Cheng, X.S., Adv. Mater. Res. 391–392, 773 (2012).Google Scholar
Supplementary material: PDF

Ago supplementary material

Table S1

Download Ago supplementary material(PDF)
PDF 55.8 KB