Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-06T16:53:59.279Z Has data issue: false hasContentIssue false

The effect of temperature and exposure time on redroot pigweed (Amaranthus retroflexus) and yellow foxtail (Setaria pumila) seed mortality in the natural soil seedbank

Published online by Cambridge University Press:  08 May 2024

Valentina Šoštarčić*
Affiliation:
Postdoctoral Researcher, Department of Weed Science, University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
Mateja Pišonić
Affiliation:
Master’s Student, Department of Weed Science, University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
Laura Pismarović
Affiliation:
Ph.D Student, Department of Weed Science, University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
Maja Šćepanović
Affiliation:
Full Professor, Department of Weed Science, University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
*
Corresponding author: Valentina Šoštarčić; Email: vsostarcic@agr.hr

Abstract

Heat disinfection of soil can be used to reduce the content of the soil seedbank. However, species differ in the lethal temperature needed for seed destruction and mortality. Laboratory research was conducted on the seeds of two weed species, redroot pigweed (Amaranthus retroflexus L.) and yellow foxtail [Setaria pumila (Poir.) Roem. & Schult]. The soil samples were collected at the experimental station Šašinovečki Lug, Zagreb, Croatia (45.850289°N, 16.180465°E), and exposed to linearly increasing constant temperatures of 40, 50, 60, 80, 100, and 120 C and exposure times of 30, 60, and 90 min in a laboratory oven. Weed seeds were then extracted from the soil using the sieve separation method and survival was measured by germinating seeds on filter paper. Germination counts were converted into percentages of mortality compared with untreated seeds. The results show that both temperature and exposure time significantly affected seed mortality of both weed species. Amaranthus retroflexus shows a greater susceptibility to high temperatures than S. pumila. A fitted three-parameter sigmoid model was used to define the relationship between temperature and exposure time needed for 50% (LT50) and 90% (LT90) seed mortality. The estimated LT50 values for A. retroflexus are 58.89 to 46.08 C over the 30- to 90-min exposure times; the estimated LT90 values were 113.36 to 65.72 C for the same durations. The estimated LT50 values for S. pumila over the 30- to 90-min exposure times ranged from 91.33 to 75.15 C; the estimated LT90 ranged from 98.79 to 90.32 C over the same durations. The research results contribute to the knowledge about the thermal sensitivity of seeds. Estimating efficacy of soil-heating treatments is essential when comparing the environmental, economic, and social costs of alternatives to conventional weed control methods.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Weed Science Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Bhagirath Chauhan, The University of Queensland

References

Agbeshie, AA, Abugre, S, Atta-Darkwa, T, Awuah, R (2022) A review of the effects of forest fire on soil properties. J For Res 33:14191441 CrossRefGoogle Scholar
Andreasen, C, Bitarafan, Z, Fenselau, J, Glasner, C (2018) Exploiting waste heat from combine harvesters to damage harvested weed seeds and reduce weed infestation. Agriculture 8:42 CrossRefGoogle Scholar
Bàrberi, P, Moonen, AC, Peruzzi, A, Fontanelli, M, Raffaelli, M (2009) Weed suppression by soil steaming in combination with activating compounds. Weed Res 49:5566 CrossRefGoogle Scholar
Baskin, J, Baskin, C (2004) A classification system for seed dormancy. Seed Sci Res 14:116 CrossRefGoogle Scholar
Bitarafan, Z, Kaczmarek-Derda, W, Berge, TW, Tørresen, KS, Fløistad, IS (2022) Soil steaming to disinfect barnyardgrass-infested soil masses. Weed Technol 36:177185 CrossRefGoogle Scholar
Bolfrey-Arku, GEK, Chauhan, BS, Johnson, DE (2011) Seed germination ecology of itchgrass (Rottboellia cochinchinensis). Weed Sci 59:182187 CrossRefGoogle Scholar
Clark, S, French, K (2005) Germination response to heat and smoke of 22 Poaceae species from grassy woodlands. Aust J Bot 53:445454 CrossRefGoogle Scholar
Clements, DR, Benott, DL, Murphy, SD, Swanton, CJ (1996) Tillage effects on weed seed return and seedbank composition. Weed Sci 44:314322 CrossRefGoogle Scholar
Cohen, O, Gamliel, A, Katan, J, Shubert, I, Guy, A, Weber, G, Riov, J (2019) Soil solarization based on natural soil moisture: a practical approach for reducing the seed bank of invasive plants in wetlands. NeoBiota 51:118 CrossRefGoogle Scholar
Crocker, W (1916) Mechanics of dormancy in seeds. Am J Bot 3:99120 CrossRefGoogle Scholar
Csontos, P (2007) Seed banks: ecological definitions and sampling considerations. Community Ecol 8:7585 CrossRefGoogle Scholar
Dahlquist, RM, Prather, TS, Stapleton, JJ (2007) Time and temperature requirements for weed seed thermal death. Weed Sci 55:619625 CrossRefGoogle Scholar
De Cauwer, B, Bogaert, S, Claerhout, S, Bulcke, R, Reheul, D (2015) Efficacy and reduced fuel use for hot water weed control on pavements. Weed Res 55:195205 CrossRefGoogle Scholar
De Wilde, M, Buisson, E, Yavercovski, N, Willm, L, Bieder, L, Mesléard, F (2017) Using microwave soil heating to inhibit invasive species seed germination. Invasive Plant Sci Manag 10:262270 CrossRefGoogle Scholar
Dimaano, N, Tominaga, T, Iwakami, S (2022) Thiobencarb resistance mechanism is distinct from CYP81A-based cross-resistance in late watergrass (Echinochloa phyllopogon). Weed Sci 70:160166 CrossRefGoogle Scholar
Dowsett, CA, Buddenhagen, C, James, TK, McGill, CR (2018) Yellow bristle grass (Setaria pumila) germination biology. NZ Plant Prot 71:7280 Google Scholar
Efron, B (1979) Bootstrap methods: another look at the jackknife. Ann Statist 7:126 CrossRefGoogle Scholar
Egley, GH (1990) High-temperature effects on germination and survival of weed seeds in soil. Weed Sci 38:429435 CrossRefGoogle Scholar
Egley, GH, Chandler, JM (1983) Germination and viability of weed seeds after 5.5 years in Stoneville 50-year buried-seed study. Weed Sci 31:264270 CrossRefGoogle Scholar
Fenoglio, S, Gay, P, Malacarne, G, Cucco, M (2006) Rapid recolonization of agricultural soil by microarthropods after steam disinfestation. Sustain Agric 27:125135 CrossRefGoogle Scholar
Fernando, N, Humphries, T, Florentine, SK, Chauhan, BS (2016) Factors affecting seed germination of feather fingergrass (Chloris virgata). Weed Sci 64:605612 CrossRefGoogle Scholar
Forcella, F, Wilson, RG, Renner, KA, Dekker, J, Harvey, RG, Alm, DA, Buhler, DD, Cardina, J (1992) Weed seed banks of the U.S. Corn Belt: magnitude, variation, emergence, and application. Weed Sci 40:636644 CrossRefGoogle Scholar
Gardarin, A, Dürr, C, Colbach, N (2010) Effects of seed depth and soil structure on the emergence of weeds with contrasted seed traits. Weed Res 50:91101 CrossRefGoogle Scholar
González, SL, Ghermandi, L (2012) Comparison of methods to estimate soil seed banks: the role of seed size and mass. Community Ecol 13:238242 CrossRefGoogle Scholar
González-Rabanal, F, Casal, M (1995) Effect of high temperatures and ash on germination of ten species from gorse shrubland. Vegetatio 116:123131 CrossRefGoogle Scholar
Goss, WL (1924) The viability of buried seeds. J Agric Res 29:349362 Google Scholar
Heap, I (2023) The International Herbicide-Resistant Weed Database. www.weedscience.org. Accessed: November 17, 2023Google Scholar
Horowitz, M, Regev, Y, Herzlinger, G (1983) Solarization for weed control. Weed Sci 31:170179 CrossRefGoogle Scholar
Hoyle, JA, McElroy, JS (2012) Relationship between temperature and heat duration on large crabgrass (Digitaria sanguinalis), Virginia buttonweed (Diodia virginiana), and cock’s-comb kyllinga (Kyllinga squamulata) seed mortality. Weed Technol 26:800806 CrossRefGoogle Scholar
Hoyle, JA, McElroy, JS, Rose, JJ (2012) Weed control using an enclosed thermal heating apparatus. Weed Technol 26:699707 CrossRefGoogle Scholar
Jakobsen, K, Jensen, JA, Bitarafan, Z, Andreasen, C (2019) Killing weed seeds with exhaust gas from a combine harvester. Agronomy 9:544 CrossRefGoogle Scholar
Khan, AM, Mobli, A, Werth, JA, Chauhan, BS (2022) Germination and seed persistence of Amaranthus retroflexus and Amaranthus viridis: two emerging weeds in Australian cotton and other summer crops. PLoS ONE 17(2):e0263798 CrossRefGoogle ScholarPubMed
Knezevic, SZ, Stepanovic, S, Datta, A (2014) Growth stage affects response of selected weed species to flaming. Weed Technol 28:233242 CrossRefGoogle Scholar
Kristoffersen, P, Rask, AM, Larsen, SU (2008) Nonchemical weed control on traffic islands: a comparison of the efficacy of five weed control techniques. Weed Res 48:124130 CrossRefGoogle Scholar
Lenth, R (2023) EMMeans: Estimated Marginal Means (Least-Squares Means). R Package Version 1.8.5. https://CRAN.R-project.org/package=emmeans. Accessed: May 23, 2023Google Scholar
Mahé, I, Cordeau, S, Bohan, DA, Derrouch, D, Dessaint, F, Millot, D, Chauvel, B (2021) Soil seedbank: old methods for new challenges in agroecology? Ann Appl Biol 178:2338 CrossRefGoogle Scholar
Mahmood, AH, Florentine, SK, Chauhan, BS, McLaren, DA, Palmer, GC, Wright, W (2016) Influence of various environmental factors on seed germination and seedling emergence of a noxious environmental weed: green galenia (Galenia pubescens). Weed Sci 64:486494.CrossRefGoogle Scholar
Malone, C (1967) A rapid method for enumeration of viable seeds in soil. Weeds 15:381382 CrossRefGoogle Scholar
Masin, R, Zuin, M, Otto, S, Zanin, G (2006) Seed longevity and dormancy of four summer annual grass weeds in turf. Weed Res 46:362370 CrossRefGoogle Scholar
Melander, B, Jørgensen, M (2005) Soil steaming to reduce intrarow weed seedling emergence. Weed Res 45:202211 CrossRefGoogle Scholar
Moonen, AC, Bàrberi, P, Raffaelli, M, Mainardi, M, Peruzzi, A, Mazzoncini, M (2002) Soil steaming with an innovative machine—effect on the weed seed bank. Pages 230–236 in Proceedings of the 5th EWRS Workshop on Physical Weed Control. Pisa, Italy: European Weed Research SocietyGoogle Scholar
Peters, RA, Yokum, HC (1961) Progress report on a study of the germination and growth of yellow foxtail (Setaria glauca L. Beauv.) NEWCC Proc 15:350355 Google Scholar
Raffaelli, M, Peruzzi, A, Del Sarto, R, Mainardi, M, Pulga, L, Pannocchia, A (2002) Effetto del vapore e di sostanze a reazione esotermiche sul riscaldamento del terreno: risultati di un quadriennio di sperimentazione. Pages 45–52 in Vapore acqueo e sostanze a reazione esotermica: combinazione a ridotto impatto ambientale per disinfezione e disinfestazione terreni, Forlì 30 ottobre 2002Google Scholar
R Core Team (2022) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org Google Scholar
Read, TR, Bellairs, SM, Mulligan, DR, Lamb, D (2000) Smoke and heat effects on soil seed bank germination for the re-establishment of a native forest community in New South Wales. Austral Ecol 25:4857 CrossRefGoogle Scholar
Ritz, C, Baty, F, Streibig, JC, Gerhard, D (2015) Dose–response analysis using R. PLoS ONE 10(12):e0146021 CrossRefGoogle ScholarPubMed
Roux-Michollet, D, Czarnes, S, Adam, B, Berry, D, Commeaux, C, Guillaumaud, N, Le Roux, X, ClaysJosserand, A (2008) Effect of steam disinfestation on community structure, abundance and activity of heterotrophic, denitrifying and nitrifying bacteria in an organic farming soil. Soil Biol Biochem 40:18361845 CrossRefGoogle Scholar
Šarić, T, Ostojić, Z, Stefanović, L, Deneva Milanova, S, Kazinczi, G, Tyšer, L (2011) The changes of the composition of weed flora in southeastern and central Europe as affected by cropping practices. Herbologia 12:812 Google Scholar
Searle, SR, Speed, FM, Milliken, GA (1980) Population marginal means in the linear model: an alternative to least squares means. Am Stat 34:216221 CrossRefGoogle Scholar
Smith, A, Burns, E (2022) Impacts of drought intensity and weed competition on drought tolerant corn performance. Weed Sci 70:455462 CrossRefGoogle Scholar
Smith, MA, Bell, DT, Loneragan, WA (1999) Comparative seed germination ecology of Austrostipa compressa and Ehrharta calycina (Poaceae) in a Western Australian Banksia woodland. Aust J Ecol 24:3542.CrossRefGoogle Scholar
Stevens, O (1957) Weights of seeds and numbers per plant. Weeds 5:4655 CrossRefGoogle Scholar
Thompson, AJ, Jones, NE, Blair, AM (1997) The effect of temperature on viability of imbibed weed seeds. Ann Appl Biol 130:123134 CrossRefGoogle Scholar
Toole, EH (1946) Final results of the Duvel buried seed experiment. J Agric Res 76:201210 Google Scholar
Vidotto, F, De Palo, F, Ferrero, A (2013) Effect of short-duration high temperatures on weed seed germination. Ann Appl Biol 163:454465 CrossRefGoogle Scholar
Wang, H, Huang, Y, Zhang, L, Liu, W, Wang, J (2018) Japanese foxtail (Alopecurus japonicus) management in wheat in China: seed germination, seedling emergence, and response to herbicide treatments. Weed Technol 32:211220 CrossRefGoogle Scholar
Wang, H, Zhao, K, Li, X, Chen, X, Liu, W, Wang, J (2020) Factors affecting seed germination and emergence of Aegilops tauschii . Weed Res 60:171181 CrossRefGoogle Scholar
Weller, S, Florentine, S, Chauhan, B (2019) Influence of selected environmental factors on seed germination and seedling emergence of Dinebra panicea var. brachiata (Steud.). Crop Prot 117:121127 CrossRefGoogle Scholar
Wen, B (2015) Effects of high temperature and water stress on seed germination of the invasive species Mexican sunflower. PLoS ONE 10(10):e0141567 CrossRefGoogle ScholarPubMed
Ye, J, Wen, B (2017) Seed germination in relation to the invasiveness in spiny amaranth and edible amaranth in Xishuangbanna, SW China. PLoS ONE 12(4):e0175948 CrossRefGoogle Scholar
Yuan, X, Wen, B (2018) Seed germination response to high temperature and water stress in three invasive Asteraceae weeds from Xishuangbanna, SW China. PLoS ONE 13(1):e0191710 CrossRefGoogle ScholarPubMed