Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-31T22:07:06.242Z Has data issue: false hasContentIssue false

An effective point cloud registration method for three-dimensional reconstruction of pressure piping

Published online by Cambridge University Press:  16 May 2024

Yulong Zhang*
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
Enguang Guan
Affiliation:
College of Logistics Engineering, Shanghai Maritime University, Shanghai, China
Baoyu Wang
Affiliation:
College of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
Yanzheng Zhao
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
*
Corresponding author: Yulong Zhang; Email: jerry_zhang@sjtu.edu.cn

Abstract

At present, industrial scenes with sparse features and weak textures are widely encountered, and the three-dimensional reconstruction of such scenes is a recognized problem. Pressure pipelines have a wide range of applications in fields such as petroleum engineering, chemical engineering, and hydropower station engineering. However, there is no mature solution for the three-dimensional reconstruction of pressure pipes. The main reason is that the typical scenes in which pressure pipes are found also have relatively few features and textures. Traditional three-dimensional reconstruction algorithms based on feature extraction are largely ineffective for such scenes that are lacking in features. In view of the above problems, this paper proposes an improved interframe registration algorithm based on point cloud fitting with cylinder axis vector constraints. By incorporating geometric feature parameters of a cylindrical pressure pipeline, specifically the axis vector of the cylinder, to constrain the traditional iterative closest point algorithm, the accuracy of point cloud registration can be improved in scenarios lacking features and textures, and some environmental uncertainties can be overcome. Finally, using actual laser point cloud data collected from pressure pipelines, the proposed fitting-based point cloud registration algorithm with cylinder axis vector constraints is tested. The experimental results show that under the same conditions, compared with other open-source point cloud registration algorithms, the proposed method can achieve higher registration accuracy. Moreover, integrating this algorithm into an open-source three-dimensional reconstruction algorithm framework can lead to better reconstruction results.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, Q., Di, X. and Xu, B., “Autonomous vehicle self-localization in urban environments based on 3d curvature feature points–monte carlo localization,” Robotica 40(3), 817833 (2022).CrossRefGoogle Scholar
Zhang, Y., Wang, L., Jiang, X., Zeng, Y. and Dai, Y., “An efficient LiDAR-based localization method for self-driving cars in dynamic environments,” Robotica 40(1), 3855 (2022).CrossRefGoogle Scholar
Ma, Y., Zhou, F., Wen, G., Gen, H., Huang, R., Wu, Q. and Pei, L., “A 3d Lidar reconstruction approach for vegetation detection in power transmission networks,” Int Arch Photogram Remote Sens Spat Inform Sci 46, 141148 (2022).CrossRefGoogle Scholar
Sarkar, M., Prabhakar, M. and Ghose, D., “Avoiding Obstacles with Geometric Constraints on Lidar Data for Autonomous Robots,” In: Third Congress on Intelligent Systems: Proceedings of CIS 2022, 1, (2023) pp. 749761.Google Scholar
Diab, A., Kashef, R. and Shaker, A., “Deep learning for LiDAR point cloud classification in remote sensing,” Sensors 22(20), 7868 (2022).CrossRefGoogle ScholarPubMed
Rivera, G., Porras, R., Florencia, R. and Sánchez-Solís, J. P., “LiDAR applications in precision agriculture for cultivating crops: A review of recent advances,” Comput Electron Agr 207, 107737 (2023).CrossRefGoogle Scholar
Yang, J. J., Cheng, W.-C. and Wang, S., Advanced Tunneling Techniques and Information Modeling of Underground Infrastructure (Springer, 2021).CrossRefGoogle Scholar
Nguyen, H. A. D. and Ha, Q. P., “Robotic autonomous systems for earthmoving equipment operating in volatile conditions and teaming capacity: A survey,” Robotica 41(2), 486510 (2023).CrossRefGoogle Scholar
Wang, H., Zhang, C., Song, Y., Pang, B. and Zhang, G., “Three-dimensional reconstruction based on visual slam of mobile robot in search and rescue disaster scenarios,” Robotica 38(2), 350373 (2020).CrossRefGoogle Scholar
Cheng, J., Sun, Y. and Meng, M. Q.-H., “Robust semantic mapping in challenging environments,” Robotica 38(2), 256270 (2020).CrossRefGoogle Scholar
Chen, M.-Y., Wu, Y.-J. and He, H., “A novel navigation system for an autonomous mobile robot in an uncertain environment,” Robotica 40(3), 421446 (2022).CrossRefGoogle Scholar
Huang, X., Mei, G., Zhang, J. and Abbas, R., “A comprehensive survey on point cloud registration,” (2021). arXiv preprint arXiv: 2103.02690, 2021.Google Scholar
Liu, S., Sun, E. and Dong, X., “SLAMB&MAI: a comprehensive methodology for SLAM benchmark and map accuracy improvement,” Robotica 42(4), 10391054 (2024).CrossRefGoogle Scholar
Berquin, Y. and Zell, A., “A physics perspective on lidar data assimilation for mobile robots,” Robotica 40(4), 862887 (2022).CrossRefGoogle Scholar
Ou, J., Hong, S. H., Kyzer, T., Yang, H., Zhou, X. and Wang, Y., “A low-cost indoor positioning system based on data-driven modeling for robotics research and education,” Robotica 41(9), 26482667 (2023).CrossRefGoogle Scholar
Liu, Z. and Zhang, F., “Balm: Bundle adjustment for lidar mapping,” IEEE Robot Autom Lett 6(2), 31843191 (2021).CrossRefGoogle Scholar
Li, R., Zhang, X., Zhang, S., Yuan, J., Liu, H. and Wu, S., “BA-LIOM: Tightly coupled laser-inertial odometry and mapping with bundle adjustment,” Robotica 42(3), 684700 (2024).CrossRefGoogle Scholar
Shan, T. and Englot, B., “Lego-loam: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain,” In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2018) pp. 47584765.Google Scholar
Fasiolo, D. T., Scalera, L. and Maset, E., “Comparing lidar and IMU-based SLAM approaches for 3D robotic mapping,” Robotica 41(9), 25882604 (2023).CrossRefGoogle Scholar
Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C. and Rus, D., “Lio-sam: Tightly-Coupled Lidar Inertial Odometry via Smoothing and Mapping,” In: 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS), (2020) pp. 51355142.Google Scholar
Xu, W., Cai, Y., He, D., Lin, J. and Zhang, F., “FAST-LIO2: Fast direct LiDAR-inertial odometry,” IEEE Trans Robot 38(4), 20532073 (2022).CrossRefGoogle Scholar
Bai, C., Xiao, T., Chen, Y., Wang, H., Zhang, F. and Gao, X., “Faster-LIO: Lightweight tightly coupled lidar-inertial odometry using parallel sparse incremental voxels,” IEEE Robot Autom Lett 7(2), 48614868 (2022).CrossRefGoogle Scholar
Chen, Y. and Medioni, G., “Object modelling by registration of multiple range images,” Image Vision Comput 10(3), 145155 (1992).CrossRefGoogle Scholar
Censi, A., “An ICP Variant using a Point-to-Line Metric,” In: 2008 IEEE International Conference on Robotics and Automation (ICRA), (2008) pp. 1925.Google Scholar
Serafin, J. and Grisetti, G., “NICP: Dense Normal Based Point Cloud Registration,” In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2015) pp. 742749.Google Scholar
Koide, K., Yokozuka, M., Oishi, S. and Banno, A., “Voxelized GICP for Fast and Accurate 3D Point Cloud Registration,” In: 2021 IEEE International Conference on Robotics and Automation (ICRA), (2021) pp. 1105411059.Google Scholar
Zhang, J., Yao, Y. and Deng, B., “Fast and robust iterative closest point,” IEEE Trans Patt Anal 44(7), 34503466 (2021).Google Scholar
Bouaziz, S., Tagliasacchi, A. and Pauly, M., “Sparse iterative closest point,” Comput Graph Forum 32(5), 113123 (2013).CrossRefGoogle Scholar
Pavlov, A. L., Ovchinnikov, G. W., Derbyshev, D. Y., Tsetserukou, D. and Oseledets, I. V., “AA-ICP: Iterative Closest Point with Anderson Acceleration,” In: 2018 IEEE International Conference on Robotics and Automation (ICRA), (2018) pp. 34073412.Google Scholar
Rusinkiewicz, S., “A symmetric objective function for ICP,” ACM Trans Graph (TOG) 38(4), 17 (2019).CrossRefGoogle Scholar
Yang, J., Li, H., Campbell, D. and Jia, Y., “Go-ICP: A globally optimal solution to 3D ICP point-set registration,” IEEE Trans Patt Anal 38(11), 22412254 (2015).CrossRefGoogle ScholarPubMed
Magnusson, M., The Three-Dimensional Normal-Distributions Transform: An Efficient Representation for Registration, Surface Analysis, and Loop Detection (Örebro universitet, 2009). Ph.D. dissertationGoogle Scholar
Myronenko, A. and Song, X., “Point set registration: Coherent point drift,” IEEE Trans Patt Anal Mach Intell 32(12), 22622275 (2010).CrossRefGoogle ScholarPubMed
Stoyanov, T., Magnusson, M., Andreasson, H. and Lilienthal, A. J., “Fast and accurate scan registration through minimization of the distance between compact 3D NDT representations,” Int J Robot Res 31(12), 13771393 (2012).CrossRefGoogle Scholar
Magnusson, M., Vaskevicius, N., Stoyanov, T., Pathak, K. and Birk, A., “Beyond Points: Evaluating Recent 3D Scan-Matching Algorithms,” In: 2015 IEEE International Conference on Robotics and Automation (ICRA), (2015) pp. 36313637.Google Scholar
Mellado, N., Aiger, D. and Mitra, N. J., “Super 4PCS fast global pointcloud registration via smart indexing,” Comput Graph Forum 33(5), 205215 (2014).CrossRefGoogle Scholar
Yang, H., Shi, J. and Carlone, L., “Teaser: Fast and certifiable point cloud registration,” IEEE Trans Robot 37(2), 314333 (2020).CrossRefGoogle Scholar
Qin, Z., Yu, H., Wang, C., Guo, Y., Peng, Y. and Xu, K., “Geometric Transformer for Fast and Robust Point Cloud Registration,” In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2022) pp. 1114311152.Google Scholar
Yu, H., Li, F., Saleh, M., Busam, B. and Ilic, S., “Cofinet: Reliable coarse-to-fine correspondences for robust pointcloud registration,” Adv Neur Inform Process Syst 34, 2387223884 (2021).Google Scholar
Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A. and Schindler, K., “Predator: Registration of 3D Point Clouds with Low Overlap,” In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, (2021) pp. 42674276.Google Scholar
Wang, G., Wu, X., Jiang, S., Liu, Z. and Wang, H., “Efficient 3D Deep LiDAR Odometry,” IEEE Trans Patt Anal Mach Intell 45(5), 57495765 (2022).Google Scholar
Yew, Z. J. and Lee, G. H., “REGTR: End-to-End Point Cloud Correspondences with Transformers,” In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2022) pp. 66776686.Google Scholar
Fu, K., Liu, S., Luo, X. and Wang, M., “Robust Point Cloud Registration Framework Based on Deep Graph Matching,” In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021) pp. 88938902.Google Scholar
Gao, W. and Tedrake, R., “Filterreg: Robust and Efficient Probabilistic Point-Set Registration Using Gaussian Filter and Twist Parameterization,” In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019) pp. 1108711096.Google Scholar
Jian, B. and Vemuri, B. C., “Robust point set registration using gaussian mixture models,” IEEE Trans Patt Anal Mach Intell 33(8), 16331645 (2011).CrossRefGoogle ScholarPubMed
Campbell, D. and Petersson, L., “An Adaptive Data Representation for Robust Point-Set Registration and Merging,” In: 2015 IEEE International Conference on Computer Vision (ICCV), (2015) pp. 42924300.Google Scholar