Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-19T14:31:14.332Z Has data issue: false hasContentIssue false

RADIOCARBON VARIATIONS IN ANNUAL TREE RINGS WITH 11-YEAR SOLAR CYCLES DURING 1800–1950

Published online by Cambridge University Press:  30 April 2024

Pavel P Povinec*
Affiliation:
Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
Ivan Kontuľ
Affiliation:
Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
Ivo Svetlik
Affiliation:
Institute of Nuclear Physics, Czech Academy of Sciences, Prague, Czech Republic
*
*Corresponding author. Email: pavel.povinec@uniba.sk

Abstract

The results of radiocarbon variation studies observed in annual tree rings from the NW Pacific (USA Northwest) (Stuiver and Braziunas 1993) and Europe (England, Brehm et al. 2021; Slovakia, Povinec 1977, 1987) are reviewed with the aim of better understanding the 11-year radiocarbon cycle and possible impacts of solar proton events on 14C levels in the atmosphere and biosphere. The average Δ14C amplitude in tree rings for the period of 1798–1944 was 1.3 ± 0.3‰, the average periodicity was 11 ± 1 years, and the average time shift between the sunspot numbers and Δ14C records was 3 ± 1 years. A new solar activity minimum (Gleissberg minimum, 1878–1933) has been identified in the Δ14C data sets from the NW Pacific and England, showing Δ14C excess of 7‰, comparable to the Dalton minimum (1797–1823). No significant changes in Δ14C levels were identified that could be associated with solar proton events during 1800–1950.

Type
Conference Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022

References

REFERENCES

Adams, N, Braddick, HJ. 1951. Time and other variations in the intensity of cosmic ray neutrons. Z. Naturforsch 6a:592598.CrossRefGoogle Scholar
Attolini, MR, Galli, M, Nanni, T, Povinec, P. 1989. A cyclogram analysis of the Bratislava 14C tree-ring record during the last century. Radiocarbon 31:839845.CrossRefGoogle Scholar
Bard, E, Raisbeck, G, Yiou, F, Jouzel, J. 1997. Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records. Earth Planet. Sci. Lett. 150: 453462. doi: 10.1016/S0012-821X(97)00082-4 CrossRefGoogle Scholar
Beer, J, McCracken, K, von Steiger, R. 2012. Cosmogenic radionuclides: theory and applications in the terrestrial and space environments. Berlin: Springer.CrossRefGoogle Scholar
Brehm, N, Bayliss, A, Christl, M, Synal, HA, Adolphi, F, Beer, J, Kromer, B, Muscheler, R, Solanki, SK, Usoskin, I, Bleicher, N, Bollhalder, S, Tyers, C, Wacker, L. 2021. Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings. Nature Geoscience 14:1015. www.nature.com/naturegeoscience.CrossRefGoogle Scholar
Burchuladze, AA, Chudý, M, Eristavy, IV, Pagava, SV, Povinec, P, Šivo, A, Togonidze, GI. 1989. Anthropogenic 14C variations in atmospheric CO2 and wines. Radiocarbon 31:771776.CrossRefGoogle Scholar
Burchuladze, AA, Pagava, SV, Povinec, P, Togonidze, GI, Usačev, S. 1980a. Radiocarbon variations with the 11-yr solar cycle during the last century. Nature 287:320322.CrossRefGoogle Scholar
Burchuladze, AA, Pagava, SV, Povinec, P, Usačev, S. 1980b. Radiocarbon and investigation of 11-y variations of cosmic rays in the past. Reports of USSR Academy of Science 44:23472351.Google Scholar
Damon, PE, Long, A, Grey, DC. 1970. Arizona radiocarbon dates for dendrochronologically dated samples. In: Olsson, IU, editor. Radiocarbon variations and absolute chronology, Nobel symposium 12, Internatl. radiocarbon conf, 7th, Proc: Stockholm, Almqvist & Wiksell. p. 615618.Google Scholar
Damon, PE, Long, A, Wallick, EI. 1973a. On the magnitude of the 11-year radiocarbon cycle. Earth Planet. Sci. Lett. 20:300306.CrossRefGoogle Scholar
Damon, PE, Long, A, Wallick, EI. 1973b. Comments on “Radiocarbon: Short-term variations” by M.S Baxter and J.G. Farmer. Earth Planet. Sci. Lett. 20:307310.CrossRefGoogle Scholar
Dorman, LI, Mirosnicenko, LI. 1968. Solar cosmic rays. Moscow: Nauka.Google Scholar
Dunai, TJ. 2010. Cosmogenic nuclides. London: Cambridge University Press. doi: 10.1017/CBO9780511804519 CrossRefGoogle Scholar
Forbush, SE. 1946. Three unusual cosmic-ray increases possibly due to charged particles from the Sun. Physical Review 70:771772.CrossRefGoogle Scholar
Gao, PX. 2016. Long-term trend of sunspot numbers. Astrophys. J. 830:140. doi: 10.3847/0004-637X/830/2/140 CrossRefGoogle Scholar
Gleissberg, W. 1967. Secularly smoothed data on the minima and maxima of sunspot frequency. Solar Phys. 2: 231233.CrossRefGoogle Scholar
Green, JL, Boardsen, S. 2006. Duration and extent of the great auroral storm of 1859. Adv. Space Res. 38:130135.CrossRefGoogle ScholarPubMed
Jull, AJT, Panyushkina, I, Miyake, F, Masuda, K, Nakamura, T, Mitsutani, T, Lange, TE, Cruz, RJ, Baisan, C, Janovics, R, Varga, T, Molnár, M. 2018. More rapid 14C excursions in the tree-ring record: a record of different kind of solar activity at about 800 BC? Radiocarbon 60:12371248.CrossRefGoogle Scholar
Komitov, B, Kaftan, V. 2013. The sunspot cycle no. 24 in relation to long term solar activity variation. J. Adv. Res. 4:279282. doi: 10.1016/j.jare.2013.02.001 CrossRefGoogle Scholar
Konstantinov, AN, Levchenko, VA, Kocharov, GE, Mikheva, IB, Chechini, S, Galli, M, Nani, T, Povinec, P, Rugiero, L, Salomoni, A. 1992. Theoretical and experimental aspects of solar flares manifestation in radiocarbon abundances in tree rings. Radiocarbon 34:247253.CrossRefGoogle Scholar
Kontuľ, I, Ješkovský, M, Kaizer, J, Šivo, A, Richtáriková, M, Povinec, PP, Čech, P, Steier, P, Golser, R. 2017. Radiocarbon concentration in tree-ring samples collected in the south-west Slovakia (1974–2013). Applied Radiation and Isotopes 126:5860.CrossRefGoogle ScholarPubMed
Kontuľ, I, Povinec, PP, Richtáriková, M, Svetlik, I, Šivo, A. 2022. Tree rings as archives of atmospheric pollution by fossil carbon dioxide in Bratislava. Radiocarbon 64:15771585.CrossRefGoogle Scholar
Kontuľ, I, Svetlik, I, Povinec, PP, Brabcová, KP, Molnár, M. 2020. Radiocarbon in tree rings from a clean air region in Slovakia. Journal of Environmental Radioactivity 218:106237.CrossRefGoogle ScholarPubMed
Lal, D. 1999. An overview of five decades of studies of cosmic ray produced nuclides in oceans. The Science of the Total Environment 237/238:313.CrossRefGoogle Scholar
Lal, D, Peters, B. 1967. Cosmic ray produced radioactivity on the Earth. In: Sittle, K, editor. Handbuch der Physik 9/46/2:551612. Berlin: Springer. doi: 10.1007/978-3-642-46079-1_7.Google Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon – a unique tracer of global carbon cycle dynamics. Radiocarbon 42:6980. doi: 10.1017/S0033822200053066 CrossRefGoogle Scholar
Lingenfelter, RE, Hudson, HS. 1980 Solar particle fluxes and the ancient Sun. In: Pepin, RO, Eddy, JA, Merrill, RB, editors. The Ancient Sun. New York: Pergamon Press. p. 6975.Google Scholar
Lingenfelter, RE, Ramaty, R. 1970. Astrophysical and geophysical variations in C-14 production. In: Olsson, IU, editor. Radiocarbon variations and absolute chronology. Stockholm: Almqvist & Wiksell. p. 513535.Google Scholar
Masarik, J, Beer, J. 1999. Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. Journal of Geophysical Research 104:12,099–12,111.CrossRefGoogle Scholar
Masarik, J, Beer, J. 2009. An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. Journal of Geophysical Research 114:D11103. doi: 10.1029/2008JD010557 CrossRefGoogle Scholar
Mekhaldi, F, Adolphi, F, Herbs, F, Muscheler, R. 2021. The signal of solar storms embedded in cosmogenic radionuclides. Detectability and uncertainties. Journal of Geophysical Research: Space Physics 126:e2021JA029351.CrossRefGoogle Scholar
Mekhaldi, F, Muscheler, R, Adolphi, A, Aldahan, A, Beer, J, McConnell, JR, Possnert, G, Sigl, M, Svensson, A, Synal, HA, Welten, KC, Woodruff, TW. 2015. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications 6:8611.CrossRefGoogle ScholarPubMed
Miyake, F, Masuda, K, Nakamura, T. 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4:1748.CrossRefGoogle ScholarPubMed
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774-775 from tree rings in Japan. Nature 486:240242. https://doi.org/10.1038/nature11123 CrossRefGoogle ScholarPubMed
O’Hare, P, Mekhaldi, F, Adolphi, F, Raisbeck, G, Aldahan, A, Anderberg, E, et al. 2019. Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. (660 BC). Proceedings of the National Academy of Sciences 116(13):59615966.CrossRefGoogle ScholarPubMed
Park, J, Southon, J, Fahrni, S, Creasman, PP, Mewaldt, R. 2017. Relationship between solar acitvity and Δ14C in AD 775, AD 994, and 660 BC. Radiocarbon 59:11471156.CrossRefGoogle Scholar
Petrovay, K. 2010. Solar cycle prediction. Living Rev. Sol. Phys. 7:6. doi: 10.12942/lrsp-2010-6 CrossRefGoogle ScholarPubMed
Povinec, P. 1972. Preparation of methane gas for proportional 3H and 14C counters. Radiochem. Radioanal. Letters 9:127135.Google Scholar
Povinec, P. 1975. Production of isotopes in the Earth atmosphere by solar flare particles. In: Proc. Leningrad Symp. 263–275. IPI, Leningrad.Google Scholar
Povinec, P. 1977. Influence of the 11-year solar cycle on the radiocarbon variations in the atmosphere: Acta Phys. Univ. Comen. 18:139149.Google Scholar
Povinec, P. 1978. Multiwire proportional counters for low-level 14C and 3H counting. Nucl. Instr. Methods 156:441446.CrossRefGoogle Scholar
Povinec, P. 1987. History of cosmic rays by cosmogenic radionuclides. Proc. 20th Intern. Cosmic-ray Conf. 7:115–137. IUPAP, Moscow.Google Scholar
Povinec, P, Burchuladze, AA, Pagava, SV. 1983. Short term variations in radiocarbon concentration with the 11-year solar cycle. Radiocarbon 25:259266.CrossRefGoogle Scholar
Povinec, P, Chudý, M, Šivo, A. 1986. Anthropogenic radiocarbon: past, present and future. Radiocarbon 28:668672.CrossRefGoogle Scholar
Povinec, PP, Hirose, K, Aoyama, M. 2013. Fukushima accident. Radioactivity impact on the environment. New York: Elsevier. 385 p.Google Scholar
Povinec, PP, Hirose, K, Aoyama, M, Tateda, Y. 2021. Fukushima accident: 10 years after. New York: Elsevier. 560 p.Google Scholar
Povinec, PP, Kontuľ, I, Ješkovský, M, Kaizer, J, Richtáriková, M, Šivo, A, Zeman, J. 2024a. Long-term radiocarbon variation studies in the air and tree rings of Slovakia. J. Environ. Radioact. 274: 107401.CrossRefGoogle ScholarPubMed
Povinec, PP, Kontuľ, I, Ješkovský, M, Kaizer, J, Kvasniak, J, Pánik, J, Zeman, J. 2024b. Development of accelerator mass spectrometry methods for measurement of 14C, 10Be and 26Al in the CENTA laboratory. J. Radioanal. Nucl. Chem. https://doi.org/10.1007/s10967-023-09294-5 CrossRefGoogle Scholar
Povinec, PP, Litherland, AE, von Reden, KF. 2009. Developments in radiocarbon technologies: From the Libby counter to compound-specific AMS analyses. Radiocarbon 51:4578.CrossRefGoogle Scholar
Reimer, PJ et al. 2020. IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP) and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 62:725757.CrossRefGoogle Scholar
Shea, MA, Smart, DF. 2000. Fifty years of cosmic radiation data. Space Sci. Rev. 93:229262.CrossRefGoogle Scholar
Siegenthaler, U, Heimann, M, Oeschger, H. 1980. 14C variations caused by changes in the global carbon cycle. Radiocarbon 22:177191.CrossRefGoogle Scholar
Solanki, SK, Usoskin, IG, Kromer, B, Schüssler, M, Beer, J. 2004. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431:10841087.CrossRefGoogle Scholar
Stuiver, M. 1961. Variations in radiocarbon concentration and sunspot activity. J. Geophys. Res. 66:273276.CrossRefGoogle Scholar
Stuiver, M. 1965. Carbon-14 content of 18th- and 19th-century wood: variations correlated with sunspot activity. Science 149:533535.CrossRefGoogle Scholar
Stuiver, M. 1980. Solar variability and climatic-change during the current millennium. Nature 286:868871.CrossRefGoogle Scholar
Stuiver, M. 1982. A high precision calibration of the AD radiocarbon time scale. Radiocarbon 24:126.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. Holocene 3:289–30.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19:355363.CrossRefGoogle Scholar
Stuiver, M, Quay, PD. 1980. Changes in atmospheric carbon-14 attributed to a variable sun. Science 207:119.CrossRefGoogle ScholarPubMed
Suess, H. 1980. The radiocarbon record in tree rings of the last 8000 years. Radiocarbon 22:200209.CrossRefGoogle Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122:415417.CrossRefGoogle Scholar
Svetlik, I, Povinec, PP, Molnár, M, Vána, M, Sivo, A, Bujtás, T. 2010. Radiocarbon in the air of Central Europe: long-term investigations. Radiocarbon 52:823834.CrossRefGoogle Scholar
Usoskin, G. 2013. A history of solar activity over millennia. Living Rev. Solar Phys. 10:1. http://www.livingreviews.org/lrsp-2013-1 doi: 10.12942/lrsp-2013-1 CrossRefGoogle Scholar
Usoskin, G. 2017. A history of solar activity over millennia. Living Rev. Solar Phys. 14:3. doi: 10.1007/s41116-017-0006-9 CrossRefGoogle Scholar
Usoskin, G, Kromer, B, Ludlow, F, Beer, J, Friedrich, M, Kovaltsov, GA, Solanki, SK, Wacker, L. 2013. The AD775 cosmic event revisited: the Sun is to blame. Astron. Astrophys. 552:L3.CrossRefGoogle Scholar
Usoskin, IG, Koldobskiy, SA, Kovaltsov, GA, Rozanov, EV, Sukhodolov, TV, Mishev, AL, Mironova, IA. 2020. Revisited reference solar proton event of 23 February 1956: assessment of the cosmogenic-isotope method sensitivity to extreme solar events. J. Geophys. Res. Space Phys. 125:e2020JA027921.CrossRefGoogle Scholar
Wang, FY, Yu, H, Zou, YC, Dai, ZG, Cheng, KS. 2017. A rapid cosmic-ray increase in BC 3372–3371 from ancient buried tree rings in China. Nature Communications 8:1487.CrossRefGoogle Scholar
Willis, E, Tauber, H, Münnich, K. 1960. Variations in the atmospheric radiocarbon concentration over the past 1300 years. Radiocarbon 2:14.Google Scholar