Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T15:42:29.029Z Has data issue: false hasContentIssue false

A comparison of X-ray small-angle scattering results to crystal structure analysis and other physical techniques in the field of biological macromolecules

Published online by Cambridge University Press:  17 March 2009

O. Kratky
Affiliation:
Institut für Röntgenfeinstrukturforschung der Österreichischen Akademie der Wissenschaften und des Forschungszentrum Graz, Graz, Austria
I. Pilz
Affiliation:
Institut für physikalische Chemie der Universität Graz, Graz, Austria

Extract

In principle, there exist two ways to contribute to structure determination of macromolecules by X-ray diffraction: (a) by analysing diffraction data obtained from the crystalline state, and (b) by interpretation of X-ray small-angle scattering from particles in solution.

The brilliant achievements of X-ray crystal-structure analysis of macromolecules, initiated by the works of Perutz on heamoglobin and Kendrew on myoglobin, are well known and it is evident that its detailed elution of secondary, tertiary and quaternary structure cannot be matched by any other means. However, a number of necessary prerequisites for a successful application, as, for example, the availability of well-defined crystals and heavy atom labelled derivatives thereof to surmount the problem of phase determination are not always given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to original work

Bachmann, L., Schmitt-Fumian, W. W., Hammel, R. & Lederer, K. (1975). Size and shape of fibrinogen. I. Electron microscopy of the hydrated molecule. Makromolek. Chem. 176, 2603–618.CrossRefGoogle Scholar
Beeman, W. W. (1967). Some experimental procedures and recent results on liquids, solutions and globular proteins. In Small-Angle X-ray Scattering (ed. Brumberger, H.), pp. 197211. New York: Gordon and Breach.Google Scholar
Berger, J., Pilz, I., Witters, R. & Lontie, R. (1977). Studies by small-angle X-ray scattering of the quaternary structure of dissociation products of the β-haemocyanin of Helix pomatia. Eur. J. Biochem. 73, 247–53.CrossRefGoogle ScholarPubMed
Berger, J., Pilz, I., Witters, R. & Lontie, R. (1977). Studies by small-angle X-ray scattering of the quaternary structure of the β-haemocyanin and Helix pomatia. Eur. J. Biochem. 80, 7982.CrossRefGoogle ScholarPubMed
Bielig, H.-J., Kratky, O., Rohns, G. & Wawra, H. (1966). Small-angle scattering of apoferritin in solution. Biochim. biophys. Acta 112, 110–18.CrossRefGoogle ScholarPubMed
Blake, C. C. F., Koenig, D. F., Mair, G. A., North, A. C. T., Phillips, D. C. & Sarma, V. R. (1965). Structure of hen egg-white lysozyme. A. Three-dimensional fourier synthesis at 2 Å resolution. Nature, Lond. 206, 757–61.CrossRefGoogle Scholar
Bruggen, van E. F. J. (1968). Electron microscopy of haemocyanin. In Ghiretti, F., Physiology and Biochemistry. London, New York: Academic Press.Google Scholar
Chance, B., Ravilly, A. & Rumes, N. (1966). Reaction kinetics of a crystalline hemoprotein: an effect of crystal structure on reactivity of Ferrimyoglobin. J. molec. Biol. 17, 525–34.CrossRefGoogle ScholarPubMed
Colman, P. M., Deisenhofer, J., Huber, R. & Palm, W. (1976). Structure of the human antibody molecule kol (immunoglobulin Gi): an electron density map at 5 Å resolution. J. molec. Biol. 100, 257–82.CrossRefGoogle Scholar
Conrad, H., Mayer, A., Schwaiger, S. & Schneider, R. (1969 a). Kleinwinkelstreuung mit Röntgenstrahlen an Hämoglobin und dessen isolierten Untereinheiten in wässriger Lösung. Hoppe-Seyler's Z. Physiol. Chem. 350, 845–50.CrossRefGoogle Scholar
Conrad, H., Mayer, A., Thomas, H. P. & Vogel, H. (1969 b). X-ray small-angle scattering from aqueous solutions of oxy- and deoxyhaemoglobin. J. molec. Biol. 41, 225–9.CrossRefGoogle ScholarPubMed
Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G. & North, A. C. T. (1962). The structure of haemoglobin. IX. A three-dimensional Fourier synthesis at 5·5 Å resolution: description of the structure. Proc. R. Soc. A 265, 161–87.Google Scholar
Damaschun, G., Damaschun, H., Müller, J. J., Ruckpaul, K. & Zinke, M. (1974). Vergleich der Strukture von Proteinen im Kristall und in Lösung; theoretische und experimentalle Untersuchungen mittels der Röntgen-Kleinwinkelstreuung am Hämoglobin. Studia biophysica, Berlin 47, 2739.Google Scholar
Deisenhofer, J., Colman, P. M., Huber, R., Haupt, H. & Schwick, G. (1976). Crystallographic structural studies of a human Fc-fragment. I. An electron-density map at 4 Å resolution and a partial model. Hoppe Seyler's Z. Physiol. Chem. 357, 435–45.CrossRefGoogle Scholar
Durchschlag, H., Goldmann, K., Wenzl, S., Durchschlag, G. & Jaenicke, K. (1977). Ultracentrifugal and Spectroscopic Investigations on Malate Synthase from Baker's Yeast. FEBS Lett. 73, 247–50.CrossRefGoogle ScholarPubMed
Durchschlag, H., Puchwein, G., Kratky, O., Schuster, I. & Kirschner, K. (1971). X-ray small-angle scattering of yeast glyceraldehyde-3-phosphate dehydrogenase as a function of saturation with nicotinamide-adeninedinucleotide. Eur. J. Biochem. 19, 922.CrossRefGoogle Scholar
Fankuchen, I. (1943). Ferritin. V. X-ray diffraction data on ferritin and apoferritin. J. biol. Chem. 150, 5759.CrossRefGoogle Scholar
Harrison, P. M. (1963). The structure of apoferritin: molecular shape and symmetry from X-ray data. J. molec. Biol. 6, 404–22.CrossRefGoogle ScholarPubMed
Hofschneider, P. & Hagen, A. (1964). Third European Regional Conference on Electron Microscopy, pp. 6970. Prague: Czechoslovak Academy of Sciences.Google Scholar
Hoppe, W., Gassmann, J., Hunsmann, N., Schramm, H. J. & Sturm, M. (1974). Three-dimensional reconstruction of individual negatively stained yeast fatty-acid synthetase molecules from tilt series in the electron microscope. Hoppe-Seyler's Z. Physiol. Chem. 355, 1483–7.Google ScholarPubMed
Hoppe, W., Schramm, H. J., Sturm, M., Hunsmann, N. & Gassmann, J. (1976). Three-dimensional electron microscopy of individual biological objects. III. Experimental results on yeast fatty acid synthetase. Z. Naturf. 31a, 1380–90.CrossRefGoogle Scholar
Huber, R., Deisenhofer, J., Colman, P. M., Matsushina, M. & Palm, W. (1976). Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature, Lond. 264, 415–20.CrossRefGoogle Scholar
Kendrew, J. C., Dickerson, R. E., Strandberg, B. E., Hart, R. G. & Davies, D. R. (1960). Structure of myoglobin. A three-dimensional fourier synthesis at 2 Å resolution. Nature, Lond. 185, 422–7.CrossRefGoogle ScholarPubMed
Kim, S. H., Quigley, G. J., Suddath, F. L., McPherson, A., Sneden, D., Kim, J. J., Weinzierl, J. & Rich, A. (1973). Three-dimensional structure of yeast phenylalanine transfer RNA at 4·0 Å resolution. Science, N.Y. 179, 285–8.CrossRefGoogle Scholar
Kirste, R. G., Schulz, G. V. & Stuhrmann, H. B. (1969). Die Konformationsänderungen des Pottwal-Metmyoglobins bei der reversiblen Denaturierung im pH-Bereich 7 bis I. Z. Naturf. 24 b, 1385–92.CrossRefGoogle Scholar
Koshland, D. E. JrNemethy, G. & Filmer, D. (1966). Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry, N.Y. 5, 365–85.CrossRefGoogle ScholarPubMed
Kraut, J., Wright, H. T., Kellerman, M. & Freer, S. T. (1967). π-, δ-, and γ-chymotrypsin: three-dimensional electron-density and difference maps at 5 Å resolution, and comparison with chymotrypsinogen. Proc. natn. Acad. Sci. U.S.A. 58, 304–11.CrossRefGoogle ScholarPubMed
Krigbaum, W. R. & Godwin, R. W. (1968). Molecular conformation of chymotrypsinogen and chymotrypsin by low-angle X-ray diffraction. Biochemistry, N.Y. 7, 3126–31.CrossRefGoogle ScholarPubMed
Krigbaum, W. R. & Kügler, F. R. (1970). Molecular conformation of egg-white lysozyme and bovine α-lactalbumin in solution. Biochemistry, N.Y. 9, 1216–23.CrossRefGoogle ScholarPubMed
Laggner, P., Kratky, O., Palm, W. H. & Holasek, A. (1971). X-ray small angle scattering on soluble antigen-antibody complexes. FEBS Lett. 15, 220–4.CrossRefGoogle ScholarPubMed
Lederer, K. (1972). Small angle X-ray scattering measurements with dilute solutions of bovine fibrinogen. J. molec. Biol. 63, 315–20.CrossRefGoogle Scholar
Lederer, K. (1975). Grösse und Gestalt des Fbrinogenmoleküls. 3. Hydrodynamische Studien. Makromolek. Chem. 176, 2641–53.CrossRefGoogle Scholar
Lederer, K. & Hammel, R. (1975). Grösse und Gestalt des Fibrinogenmoleküls. 2. Röntgenkleinwinkelstreuung an verdünnten Lösungen. Makromolek. Chem. 176, 2619–39.Google Scholar
Marguerie, G. & Stuhrmann, H. B. (1976). A neutron small-angle study of bovine fibrinogen. J. molec. Biol. 102, 143–56.CrossRefGoogle ScholarPubMed
Monod, J., Wyman, J. & Changeux, J. P. (1965). On the nature of allosteric transitions: a plausible model J. molec. Biol. 12, 88118.CrossRefGoogle ScholarPubMed
Pilz, I., Glatter, O. & Kratky, O. (1972). Röntgenkleinwinkelstudien über die Substruktur von Helix pomatia Hämocyanin. Z. Naturf. 27 b, 518–24.CrossRefGoogle Scholar
Pilz, I., Herbst, M., Kratky, O., Oesterhelt, D. & Lynen, F. (1970 a). Röntgenkleinwinkel-Untersuchungen an der Fettsäuresynthetase aus Hefe. Eur. J. Biochem. 13, 5564.CrossRefGoogle Scholar
Pilz, I., Kratky, O., Cramer, F., v.d., Haar F. & Schlimme, E. (1970 b). On the conformation of phenylalanine specific transfer RNA. Eur. J. Biochem. 15, 401–9.CrossRefGoogle ScholarPubMed
Pilz, I., Kratky, O. & Karush, F. (1974). Changes of the conformation of rabbit IgG antibody caused by the specific binding of a hapten. X-ray small-angle studies. Eur. J. Biochem. 41, 9196.CrossRefGoogle ScholarPubMed
Pilz, I., Kratky, O., Licht, A. & Sela, M. (1973). Shape and volume of anti-poly(D-alanyl) antibodies in the presence and absence of tetra-D-alananine as followed by small-angle X-ray scattering. Biochemistry, N.Y. 12, 49985005.CrossRefGoogle ScholarPubMed
Pilz, I., Kratky, O., Licht, A. & Sela, M. (1975). Shape and volume of fragments Fab′ and (Fab′)2 of anti-poly(D-alanyl) antibodies in the presence and absence of tetra-D-alanine as determined by small-angle X-ray scattering. Biochemistry, N.Y. 14, 1326–33.CrossRefGoogle ScholarPubMed
Pilz, I., Kratky, O. & Moring-Claesson, I. (1970 c). Röntgenkleinwinkelstudien an verdünnten Lösungen von Helix pomatia Hänocyanin. Z. Naturf, 25 b, 600–6.CrossRefGoogle Scholar
Pilz, I., Malnig, F., Kratky, O. & v.d., Haar F. (1977 a). On the conformation of serine-specific transfer RNA. Studies by small-angle X-ray scattering and ultraviolet absorption of the molecule in solution. Eur. J. Biochem. 75, 3541.CrossRefGoogle ScholarPubMed
Pilz, I., Puchwein, G., Kratky, O., Herbst, M., Haager, O., Gall, W. E. & Edelmann, G. M. (1970 d). Small angle X-ray scattering of a homogeneous γGi immunoglobulin. Biochemistry, N.Y. 9, 211–19.CrossRefGoogle ScholarPubMed
Pilz, I., Schwarz, E. & Palm, W. (1976). Small-angle X-ray studies of the Fab and Fc fragments from the human immunoglobulin molecule Kol. Eur. J. Biochem. 71, 239247.CrossRefGoogle ScholarPubMed
Pilz, I., Schwarz, E. & Palm, W. (1977 b). Small-angle X-ray studies of the human immunoglobulin molecule Kol. Eur. J. Biochem. 75, 195–9.CrossRefGoogle ScholarPubMed
Poljak, R. J., Amzel, L. M., Avey, H. P., Chen, B. L., Phizackarley, R. P. & Saul, F. (1973). Three-dimensional structure of the Fab′ fragment of a human immunoglobulin at 2·8 Å resolution. Proc. natn. Acad. Sci. U.S.A. 70, 3305–10.CrossRefGoogle ScholarPubMed
Quigley, G. J. & Rich, A. (1976). Structural domains of transfer RNA molecules. Science, N.Y. 194, 796806.CrossRefGoogle ScholarPubMed
Rich, A. & RajBhandary, U. L. (1976). Transfer RNA: molecular structure, sequence, and properties. A. Rev. Biochem. 45, 805–60.CrossRefGoogle ScholarPubMed
Richter, G. W. (1959). Internal structure of apoferritin as revealed by the ‘negative staining technique’. J. biophys. biochem. Cytol. 6, 531–3.Google Scholar
Rothern, A. (1944). Ferritin and apoferritin in the ultracentrifuge. Studies on the relationship of ferritin and apoferritin; precision measurements of the rates of sedimentation of apoferritin. J. biol. Chem. 152, 679–93.Google Scholar
Sarma, R., Silverton, E. W., Davies, D. R. & Teery, W. D. (1971). The three-dimensional structure at 6 Å resolution of a human γ G-i immunoglobuline molecule. J. biol. Chem. 246, 3753–63.Google Scholar
Schmid, G., Durchschlag, H., Biedermann, G., Eggerer, H. & Jaenicke, R. (1974). Molecular structure of malate synthase and structural changes upon ligand binding to the enzyme. Biochem. biophys. Res. Commun. 58, 419–26.CrossRefGoogle ScholarPubMed
Schneider, R., Mayer, A., Eicher, H., Stöckel, P., Schmatz, W. & Schelten, J. (1970). Methode zur Elimination des Lösungsmittelstreuanteils bei der Röntgen- und Neutronen-Kleinwinkelstreuung. Verifiziert an Hämoglobinlösungen. Hoppe-Seyler's Z. Physiol. Chem. 351, 14991502.CrossRefGoogle Scholar
Schneider, R., Mayer, A., Schmatz, W., Schelten, J., Franzel, R. & Eicher, H. (1971). X-ray and neutron small-angle scattering from hemoglobin in aqueous solution and in crystal. Eur. J. Biochem. 20, 179182.CrossRefGoogle ScholarPubMed
Simon, I. (1971). Determination of small alterations in the radius of gyration by small-angle X-ray scattering. J. appl. Crystallogr. 4, 317–18.CrossRefGoogle Scholar
Simon, I. (1972). Study of the position of NAD and its effect on the conformation of the D-glyceraldehyde-3-phosphate dehydrogenase by small-angle X-ray scattering. Eur. J. Biochem. 30, 184–9.CrossRefGoogle ScholarPubMed
Sloan, D. L. & Velick, S. F. (1973). Protein hydration changes in the formation of the nicotinamide adenine dinucleotide complexes of glyceraldehyde 3-phosphate dehydrogenase of yeast. J. biol. Chem. 248, 5419–23.CrossRefGoogle ScholarPubMed
Stuhrmann, H. B. (1970 a). Ein neues Verfahren zur Bestimmung der Oberflächenform und der inneren Srutktur von gelösten globulären Protein aus Röntgenkleinwinkelmessungen. Z. Phys. Chem. N.F. 72, 177–84.CrossRefGoogle Scholar
Stuhrmann, H. B. (1970 b). Die Bestimmung der Oberflächenform von gelöstem Myoglohin aus Röntgenkleinwinkelmessungen. Z. Phys. Chem. N.F. 72, 185–98.CrossRefGoogle Scholar
Stuhrmann, H. B. (1973). Comparison of the three basic scattering functions of myoglobin in solution with those from the known structure in crystalline state. J. molcc. Biol. 77, 363–9.CrossRefGoogle ScholarPubMed
Stuhrmann, H. B. (1974). Neutron small-angle scattering of biological macromolecules in solution. J. appl. Crystallogr, 7, 173–8.CrossRefGoogle Scholar
Stuhrmann, H. B. & Fuess, H. (1976). A neutron small-angle scattering study of hen egg-white lysozyme. Acta Crystallogr. A 32, 6774.CrossRefGoogle Scholar
Valentine, R. C. & Green, N. M. (1967). Electron microscopy of an anti-body-hapten complex. J. molec. Biol. 27, 615–17.Google Scholar
Werner, T. C., Bunting, J. R. & Cathou, R. E. (1972). The shape of immunoglobulin G molecules in solution. Proc. natn. Acad. Sci. U.S.A. 69, 795–9.CrossRefGoogle ScholarPubMed
Zipper, P. & Durchschlag, H. (1977). Small-angle X-ray studies on malate synthase from baker's yeast. Biochem. biophys. Res. Comm. 75, 394400.CrossRefGoogle ScholarPubMed