Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-02T09:29:30.326Z Has data issue: false hasContentIssue false

Micronutrient diversity in pole and bush type Dolichos bean germplasm: identification of gene sources from biofortification perspectives

Published online by Cambridge University Press:  04 January 2024

Raj Bahadur Yadava
Affiliation:
ICAR-Indian Institute of Vegetable Research, Varanasi-221 305, Uttar Pradesh, India
Rajeev Kumar
Affiliation:
ICAR-Indian Institute of Vegetable Research, Varanasi-221 305, Uttar Pradesh, India
Hare Krishna*
Affiliation:
ICAR-Indian Institute of Vegetable Research, Varanasi-221 305, Uttar Pradesh, India
Kamlesh Yadav
Affiliation:
ICAR-Indian Institute of Vegetable Research, Varanasi-221 305, Uttar Pradesh, India
Nagendra Rai
Affiliation:
ICAR-Indian Institute of Vegetable Research, Varanasi-221 305, Uttar Pradesh, India
Manish Singh
Affiliation:
ICAR-Indian Institute of Vegetable Research, Varanasi-221 305, Uttar Pradesh, India
Jagdish Singh
Affiliation:
ICAR-Indian Institute of Vegetable Research, Varanasi-221 305, Uttar Pradesh, India
Tusar Kanti Behera
Affiliation:
ICAR-Indian Institute of Vegetable Research, Varanasi-221 305, Uttar Pradesh, India
*
Corresponding author: Hare Krishna; Email: kishun@rediffmail.com

Abstract

Exploring the nutritional potential of underutilized legumes such as Dolichos bean (Lablab purpureus L.) is of great significance, particularly, in view of accomplishing the United Nation's Sustainable Development Goal number two, which emphasizes on improving food and nutrition security by 2030. A thorough understanding of genetic variability is crucial for developing biofortified cultivars of Dolichos bean. In this study, the Dolichos bean genotypes represented by pole and bush types (28 bush and 19 pole types) were assessed for genetic variability for Cu, Mn, Fe and Zn contents. Pole type genotypes had higher average contents for all micronutrients except manganese. Among micronutrients, Cu, Fe, Mn and Zn, content ranged from 10.10–19.95, 77.13–331.93, 22.78–46.40 and 42.03–102.85 mg kg−1 in pole type, and 8.2–18.5, 50.8–99.3, 25.65–53.25 and 37.15–63.25 mg kg−1 in bush type beans, respectively. Strong positive correlations between Cu, Fe and Zn concentrations occurred, which indicates the possibility of simultaneous improvement of these nutrients. Pod pigmentation was positively correlated with contents of Fe and Zn. There was an association of micronutrients with yield. The pole genotypes VRSEM-1000, VRDB-01 and VRSEM 109 and bush type genotypes VRBSEM-3, VRBSEM-35 and VRBSEM- 200 are good source of microelements and high yielders. Gene sources with enhanced nutrients may be used as cultivated forms or as input material for breeding nutritionally rich biofortified varieties of bean.

Type
Short Communication
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, MS, Ivy, FI, Islam, MS, Saha, M and Das, AC (2021) A study on morpho-nutritional variability among lablab bean genotypes. American Journal of Agricultural Science, Engineering, and Technology 5, 92102.CrossRefGoogle Scholar
Anand, T, Rahi, M, Sharma, P and Ingle, GK (2014) Issues in prevention of iron deficiency anemia in India. Nutrition (Burbank, Los Angeles County, Calif.) 30, 764770.CrossRefGoogle ScholarPubMed
Araujo, WAD, Santana, RS, Mauad, M and da Silva, RS (2020) Dry matter accumulation and nutrient uptake in determinate and indeterminate soybeans. Journal of Plant Nutrition 44, 508522.CrossRefGoogle Scholar
Delfini, J, Moda-Cirino, V, Dos Santos Neto, J, Buratto, JS, Ruas, PM and Azeredo Gonçalves, LS (2020) Diversity of nutritional content in seeds of Brazilian common bean germplasm. PloS one 15, e0239263.CrossRefGoogle ScholarPubMed
Faiz, A, Hanafi, MM, Hakim, MA, Rafii, MY and Akmar Abdullah, SN (2015) Micronutrients, antioxidant activity, and tocochromanol contents of selected pigmented upland rice genotypes. International Journal of Agriculture and Biology 17, 741747.CrossRefGoogle Scholar
Karakoy, T, Erdem, H, Baloch, FS, Toklu, F, Eker, S, Kilian, B and Ozkan, H (2012) Diversity of macro-and micronutrients in the seeds of lentil landraces. The Scientific World Journal 2, 710412.Google Scholar
Kumari, M, Naresh, P, Acharya, GC, Laxminarayana, K, Singh, HS, Raghu, BR and Aghora, TS (2022) Nutritional diversity of Indian lablab bean (Lablab purpureus L. Sweet): an approach towards biofortification. South African Journal of Botany 149, 189195.CrossRefGoogle Scholar
Maganti, S, Swaminathan, R and Parida, A (2020) Variation in iron and zinc content in traditional rice genotypes. Agricultural Research 9, 316328.CrossRefGoogle Scholar
Minde, JJ, Venkataramana, PB and Matemu, AO (2020) Dolichos Lablab-an underutilized crop with future potentials for food and nutrition security: a review. Critical Reviews in Food Science and Nutrition 61, 22492261.CrossRefGoogle ScholarPubMed
Muthayya, S, Rah, JH, Sugimoto, JD, Roos, FF, Kraemer, K and Black, RE (2013) The global hidden hunger indices and maps: an advocacy tool for action. PloS One 8, e67860.CrossRefGoogle ScholarPubMed
Naeem, M, Shabbir, A, Ansari, AA, Aftab, T, Khan, MMA and Uddin, M (2020) Hyacinth bean (Lablab purpureus L.)–An underutilised crop with future potential. Scientia Horticulturae 272, 109551.CrossRefGoogle Scholar
Patel, GM, Kale, BH and Kyada, AD, Modha, KG Chauhan, DA and Patel, RK (2022) Genetic variability and correlation study in determinate type progenies of Indian bean [Lablab purpureus (L.) sweet]. International Journal of Plant & Soil Science 34, 452460.CrossRefGoogle Scholar
Paul, V and Srivastava, GC (2007) Minerals in pericarp of tomato (Solanum lycopersicon L.) fruit and its ripening behaviour. Journal of Applied Horticulture 9, 140145.CrossRefGoogle Scholar
Wessells, KR and Brown, KH (2012) Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PloS One 7, e50568.CrossRefGoogle ScholarPubMed
Yadav, L and Maurya, (2022) Fight hidden hunger through national programs and food based approaches. In Saeed, F, Ahmed, A and Afzaal, MM (eds), Combating Malnutrition through Sustainable Approaches. IntechOpen. doi: 10.5772/intechopen.104459Google Scholar
Supplementary material: File

Yadava et al. supplementary material

Yadava et al. supplementary material
Download Yadava et al. supplementary material(File)
File 404.1 KB