Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-01T09:37:32.528Z Has data issue: false hasContentIssue false

Evolution of skull shape in carnivores. 3. The origin and early radiation of the modern carnivore families1

Published online by Cambridge University Press:  08 February 2016

Leonard B. Radinsky*
Affiliation:
Department of Anatomy, University of Chicago, 1025 East 57th Street, Chicago, Illinois 60637

Abstract

Functionally significant aspects of skull morphology were examined in Eocene miacids and in early members of the modern carnivore families to see if functional craniology might shed light on factors involved in the origin and early evolution of the modern carnivores. No key innovations are apparent at the beginning of the modern carnivore radiation, and an alternative hypothesis to account for that radiation is proposed: the radiation represents the filling of niches vacated by the extinction of several groups of archaic carnivores in the late Eocene. Differences that distinguish modern viverrids, canids, felids, and mustelids from each other today were less pronounced in the Oligocene, when these families first appeared, and provide no insights into possible ecological differences at the family level. However, body size differences among the early members of the modern carnivore families suggest that partitioning of prey resources by size may have been a factor in their initial radiation. Comparison of cranial morphology in Eocene miacids, early members of the modern carnivore families, and living carnivores allows reconstruction of the primitive conditions of carnivore skull morphology and determination of the pathways of morphological transformation that resulted in the diversity of skull morphology seen in modern carnivores.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baskin, J. A. 1981. Barbourofelis (Nimravidae) and Nimravides (Felidae), with a description of two new species from the late Miocene of Florida. J. Mammal. 62:122139.CrossRefGoogle Scholar
Beaumont, G. de. 1967. Observations sur les Herpestinae (Viverridae, Carnivora) de l'Oligocène supérieur avec quelques remarges sur des Hyaenidae du Néogène. Arch. Sci. Geneve. 20:79108.Google Scholar
Beaumont, G. de. 1968. Note sur l'ostéologie crânienne de Plesiogale Pomel (Mustelidae, Carnivora). Arch. Sci. Geneve. 21:2734.Google Scholar
Colbert, E. H. 1980. Evolution of the Vertebrates. 3rd ed.510 pp. John Wiley; New York.Google Scholar
Dawson, M. R. 1980. Paleontology and geology of the Badwater Creek Area, central Wyoming. Part 20. The Late Eocene Creodonta and Carnivora. Ann. Carnegie Mus. 40:7991.CrossRefGoogle Scholar
Emerson, S. B. and Radinsky, L. 1980. Functional analysis of sabertooth cranial morphology. Paleobiology. 6:295312.CrossRefGoogle Scholar
Emry, R. J. 1981. Additions to the mammalian fauna of the type Duchesnean, with comments on the status of the Duchesnean “Age”. J. Paleontol. 55:563570.Google Scholar
Ewer, R. G. 1973. The Carnivores. 494 pp. Cornell Univ. Press; Ithaca, New York.Google Scholar
Fleischer, G. 1978. Evolutionary principles of the mammalian middle ear. Adv. Anat. Embryol. Cell Biol. 55:169.Google ScholarPubMed
Flynn, J. and Galiano, H. 1982. Phylogeny of the Early Tertiary Carnivora, with a description of a new subgenus of Protictis from the Middle Eocene of northwestern Wyoming. Am. Mus. Novitates. 2725:164.Google Scholar
Gazin, C. L. 1955. A review of the Upper Eocene Artiodactyla of North America. Smithsonian Miscell. Coll. 128:196.Google Scholar
Gazin, C. L. 1976. Mammalian faunal zones of the Bridger Middle Eocene. Smithsonian Contrib. Paleobiology 26:125.Google Scholar
Hartenberger, J.-L. 1973. Les Rongeurs de l'Éocene d'Europe. Bull. Mus. Nat. d'Hist. Nat. 132:4970.Google Scholar
Hunt, R. M. 1974a. The auditory bulla in Carnivora: an anatomical basis for reappraisal of carnivore evolution. J. Morphol. 143:2176.CrossRefGoogle ScholarPubMed
Hunt, R. M. 1974b. Daphoenictis, a cat-like carnivore (Mammalia, Amphicyonidae) from the Oligocene of North America. J. Paleontol. 48:10301047.Google Scholar
Hunt, R. M. 1977. Basicranial anatomy of Cynelos Jourdan (Mammalia: Carnivora) an Aquitanian amphicyonid from the Allier Basin, France. J. Paleontol. 51:826843.Google Scholar
Jaksić, F. M., Greene, H. W., and Jañez, J. L. 1981. The guild structure of a community of predatory vertebrates in central Chile. Oecologia. 49:2128.CrossRefGoogle Scholar
Jenkins, F. A. Jr. and Camazine, S. M. 1977. Hip structure and locomotion in ambulatory and cursorial carnivores. J. Zool. London. 181:351370.CrossRefGoogle Scholar
Jerison, H. J. 1973. Evolution of the Brain and Intelligence. 482 pp. Academic Press; New York.Google Scholar
Kay, R. F. 1975. The functional adaptations of primate molar teeth. Am. J. Phys. Anthropol. 43:195216.CrossRefGoogle ScholarPubMed
Lauder, G. V. 1981. Form and function: structural analysis in evolutionary morphology. Paleobiology 7:430442.CrossRefGoogle Scholar
Lillegraven, J. 1972. Ordinal and familial diversity of Cenozoic mammals. Taxon. 21:261274.CrossRefGoogle Scholar
MacPhail, E. M. 1982. Brain and Intelligence in Vertebrates. 423 pp. Oxford Univ. Press; Oxford.Google Scholar
Martin, L. D. 1980. Functional morphology and the evolution of cats. Trans. Nebraska Acad. Sci. 8:141154.Google Scholar
Matthew, W. D. 1909. The Carnivora and Insectivora of the Bridger Basin, Middle Eocene. Mem. Am. Mus. Nat. Hist. 9:291567.Google Scholar
Novacek, M. J. 1977. Aspects of the problem of variation, origin and evolution of the eutherian auditory bulla. Mammal Rev. 7:131149.CrossRefGoogle Scholar
Piveteau, J. 1961. Traité de Paléontologie. Vol. 6. 1138 pp. Masson; Paris.Google Scholar
Radinsky, L. B. 1966. The adaptive radiation of the phenacodontid condylarths and the origin of the Perissodactyla. Evolution. 20:408417.CrossRefGoogle ScholarPubMed
Radinsky, L. B. 1969. Early evolution of the Perissodactyla. Evolution. 23:308328.CrossRefGoogle Scholar
Radinsky, L. B. 1973. Evolution of the canid brain. Brain, Behav. Evol. 7:169202.CrossRefGoogle ScholarPubMed
Radinsky, L. B. 1977. Brains of early carnivores. Paleobiology. 3:333349.CrossRefGoogle Scholar
Radinsky, L. B. 1978. Evolution of brain size in carnivores and ungulates. Am. Nat. 112:815831.CrossRefGoogle Scholar
Radinsky, L. B. 1981a. Evolution of skull shape in carnivores. 1. Representative modern carnivores. Biol. J. Linnean Soc. 15:369388.CrossRefGoogle Scholar
Radinsky, L. B. 1981b. Evolution of skull shape in carnivores. 2. Additional modern carnivores. Biol. J. Linnean Soc. 16:337355.CrossRefGoogle Scholar
Radinsky, L. B. 1981c. Brain evolution in extinct South American ungulates. Brain, Behav. Evol. 18:169187.CrossRefGoogle ScholarPubMed
Raup, D. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science. 206:217218.CrossRefGoogle ScholarPubMed
Romer, A. S. 1966. Vertebrate Paleontology. 3rd ed.468 pp. Univ. Chicago Press; Chicago.Google Scholar
Rosenzweig, M. L. 1966. Community structure in sympatric Carnivora. J. Mammal. 47:602612.CrossRefGoogle Scholar
Savage, R. J. G. 1957. The anatomy of Potamotherium, an Oligocene lutrine. Proc. Zool. Soc. London. 129:151244.CrossRefGoogle Scholar
Scott, W. B. and Jepsen, G. L. 1936. The mammalian fauna of the White River Oligocene. Pt. 1. Insectivora and Carnivora. Trans. Am. Philos. Soc. 28:1153.CrossRefGoogle Scholar
Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85:1450.Google Scholar
Springhorn, R. 1980. Paroodectes feisti, der erste Miacide (Carnivora, Mammalia) aus dem Mittel-Eozän von Messel. Paläontol. Z. 54:171198.CrossRefGoogle Scholar
Sudre, J. 1978. Les Artiodactyles de l'Éocène Moyen et Supérieur d'Europe Occidentale. Mem. Trav. Ecole Pratique des Hautes Études Inst. Montpellier. 7:1229.Google Scholar
Van Couvering, J. A., Aubry, M.-P., Berggren, W. A., Bujak, J. P., Naeser, C. W., and Wieser, T. 1981. The Terminal Eocene Event and the Polish connection. Palaeogeogr., Palaeoclim., Palaeoecol. 36:321362.CrossRefGoogle Scholar
Wolfe, J. A. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. Am. Sci. 66:694703.Google Scholar
Yalden, D. W. 1970. The functional morphology of the carpal bones in carnivores. Acta Anat. 77:481500.CrossRefGoogle ScholarPubMed