Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-31T14:45:08.743Z Has data issue: false hasContentIssue false

Re-assessing the role of peri-operative nutritional therapy in patients with pancreatic cancer undergoing surgery: a narrative review

Published online by Cambridge University Press:  05 September 2023

Zoi Bouloubasi
Affiliation:
Department of Clinical Nutrition, Evangelismos General Hospital, Athens, Greece
Dimitrios Karayiannis*
Affiliation:
Department of Clinical Nutrition, Evangelismos General Hospital, Athens, Greece
Zoe Pafili
Affiliation:
Department of Clinical Nutrition, Evangelismos General Hospital, Athens, Greece
Avra Almperti
Affiliation:
Department of Clinical Nutrition, Evangelismos General Hospital, Athens, Greece
Konstantina Nikolakopoulou
Affiliation:
Department of Clinical Nutrition, Evangelismos General Hospital, Athens, Greece
Grigoris Lakiotis
Affiliation:
2nd Department of Surgery, Evangelismos General Hospital, Athens, Greece
George Stylianidis
Affiliation:
2nd Department of Surgery, Evangelismos General Hospital, Athens, Greece
Vasilios Vougas
Affiliation:
1st Department of Surgery and Transplantation, Evangelismos General Hospital, Athens, Greece
*
*Corresponding author: Dimitrios Karayiannis, email: jimkar_d@yahoo.com

Abstract

Pancreatic cancer is the most common medical condition that requires pancreatic resection. Over the last three decades, significant improvements have been made in the conditions and procedures related to pancreatic surgery, resulting in mortality rates lower than 5%. However, it is important to note that the morbidity in pancreatic surgery remains r latively high, with a percentage range of 30–60%. Pre-operative malnutrition is considered to be an independent risk factor for post-operative complications in pancreatic surgery, such as impaired wound healing, higher infection rates, prolonged hospital stay, hospital readmission, poor prognosis, and increased morbidity and mortality. Regarding the post-operative period, it is crucial to provide the best possible management of gastrointestinal dysfunction and to handle the consequences of alterations in food digestion and nutrient absorption for those undergoing pancreatic surgery. The European Society for Clinical Nutrition and Metabolism (ESPEN) suggests that early oral feeding should be the preferred way to initiate nourishing surgical patients as it is associated with lower rates of complications. However, there is ongoing debate about the optimal post-operative feeding approach. Several studies have shown that enteral nutrition is associated with a shorter time to recovery, superior clinical outcomes and biomarkers. On the other hand, recent data suggest that nutritional goals are better achieved with parenteral feeding, either exclusively or as a supplement. The current review highlights recommendations from existing evidence, including nutritional screening and assessment and pre/post-operative nutrition support fundamentals to improve patient outcomes. Key areas for improvement and opportunities to enhance guideline implementation are also highlighted.

Type
Review Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Strobel, O, Neoptolemos, J, Jäger, D, et al. (2019) Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol 16, 1126.10.1038/s41571-018-0112-1CrossRefGoogle ScholarPubMed
Berry, AJ (2013) Pancreatic surgery: indications, complications, and implications for nutrition intervention. Nutr Clin Pract 28, 330357.CrossRefGoogle ScholarPubMed
Afaneh, C, Gerszberg, D, Slattery, E, et al. (2015) Pancreatic cancer surgery and nutrition management: a review of the current literature. Hepatobiliary Surg Nutr 4, 5971.Google ScholarPubMed
La Torre, M, Ziparo, V, Nigri, G, et al. (2013) Malnutrition and pancreatic surgery: prevalence and outcomes. J Surg Oncol 107, 702708.CrossRefGoogle ScholarPubMed
Gilliland, TM, Villafane-Ferriol, N, Shah, KP, et al. (2017) Nutritional and metabolic derangements in pancreatic cancer and pancreatic resection. Nutrients 9, 243.CrossRefGoogle ScholarPubMed
Xu, JY, Tian, XD, Song, JH, et al. (2021) Preoperative nutrition support may reduce the prevalence of postoperative pancreatic fistula after open pancreaticoduodenectomy in patients with high nutritional risk determined by NRS2002. Biomed Res Int 2021, 6691966.10.1155/2021/6691966CrossRefGoogle ScholarPubMed
Ettorre, GM, Levi Sandri, GB, Santoro, R, et al. (2015) Laparoscopic liver resection for hepatocellular carcinoma in cirrhotic patients: single center experience of 90 cases. Hepatobiliary Surg Nutr 4, 320324.Google ScholarPubMed
Ford, KL, Prado, CM, Weimann, A, et al. (2022) Unresolved issues in perioperative nutrition: a narrative review. Clin Nutr 41, 15781590.CrossRefGoogle ScholarPubMed
Weimann, A, Braga, M, Carli, F, et al. (2017) ESPEN guideline: clinical nutrition in surgery. Clin Nutr 36, 623650.CrossRefGoogle ScholarPubMed
Gianotti, L, Besselink, MG, Sandini, M, et al. (2018) Nutritional support and therapy in pancreatic surgery: a position paper of the International Study Group on Pancreatic Surgery (ISGPS). Surgery 164, 10351048.CrossRefGoogle Scholar
Deftereos, I, Djordjevic, A, Carter, VM, et al. (2021) Malnutrition screening tools in gastrointestinal cancer: a systematic review of concurrent validity. Surg Oncol 38, 101627.10.1016/j.suronc.2021.101627CrossRefGoogle ScholarPubMed
Jie, B, Jiang, ZM, Nolan, MT, et al. (2012) Impact of preoperative nutritional support on clinical outcome in abdominal surgical patients at nutritional risk. Nutrition 28, 10221027.CrossRefGoogle ScholarPubMed
Starke, J, Schneider, H, Alteheld, B, et al. (2011) Short-term individual nutritional care as part of routine clinical setting improves outcome and quality of life in malnourished medical patients. Clin Nutr 30, 194201.10.1016/j.clnu.2010.07.021CrossRefGoogle ScholarPubMed
Trestini, I, Paiella, S, Sandini, M, et al. (2020) Prognostic impact of preoperative nutritional risk in patients who undergo surgery for pancreatic adenocarcinoma. Ann Surg Oncol 27, 53255334.10.1245/s10434-020-08515-5CrossRefGoogle ScholarPubMed
Evans, DC, Corkins, MR, Malone, A, et al. (2021) The use of visceral proteins as nutrition markers: an ASPEN position paper. Nutr Clin Pract 36, 2228.10.1002/ncp.10588CrossRefGoogle ScholarPubMed
Kanda, M, Fujii, T, Kodera, Y, et al. (2011) Nutritional predictors of postoperative outcome in pancreatic cancer. Br J Surg 98, 268274.CrossRefGoogle ScholarPubMed
Glen, P, Jamieson, NB, McMillan, DC, et al. (2006) Evaluation of an inflammation-based prognostic score in patients with inoperable pancreatic cancer. Pancreatology 6, 450453.CrossRefGoogle ScholarPubMed
Kato, Y, Yamada, S, Suenaga, M, et al. (2018) Impact of the controlling nutritional status score on the prognosis after curative resection of pancreatic ductal adenocarcinoma. Pancreas 47, 823829.CrossRefGoogle ScholarPubMed
Shinkawa, H, Takemura, S, Uenishi, T, et al. (2013) Nutritional risk index as an independent predictive factor for the development of surgical site infection after pancreaticoduodenectomy. Surg Today 43, 276283.CrossRefGoogle ScholarPubMed
Bayramov, N & Mammadova, S (2022) A review of the current ERAS guidelines for liver resection, liver transplantation and pancreatoduodenectomy. Ann Med Surg (Lond) 82, 104596.Google ScholarPubMed
Wei, JXAJ (2021) Current situation, consensus and controversy of perioperative nutrition management in pangreatic surgery: a narrative review. J Pancreatol 14, 3744.Google Scholar
Poulia, KA, Sarantis, P, Antoniadou, D, et al. (2020) Pancreatic cancer and cachexia-metabolic mechanisms and novel insights. Nutrients 12, 1543.10.3390/nu12061543CrossRefGoogle ScholarPubMed
Onesti, JK, Wright, GP, Kenning, SE, et al. (2016) Sarcopenia and survival in patients undergoing pancreatic resection. Pancreatology 16, 284289.CrossRefGoogle ScholarPubMed
Perra, T, Sotgiu, G & Porcu, A (2022) Sarcopenia and risk of pancreatic fistula after pancreatic surgery: a systematic review. J Clin Med 11, 4144.10.3390/jcm11144144CrossRefGoogle ScholarPubMed
Correia, M, Tappenden, KA, Malone, A, et al. (2022) Utilization and validation of the Global Leadership Initiative on Malnutrition (GLIM): a scoping review. Clin Nutr 41, 687697.10.1016/j.clnu.2022.01.018CrossRefGoogle ScholarPubMed
Shi, H, Wei, Y, Cheng, S, et al. (2021) Survival prediction after upfront surgery in patients with pancreatic ductal adenocarcinoma: radiomic, clinic-pathologic and body composition analysis. Pancreatology 21, 731737.10.1016/j.pan.2021.02.009CrossRefGoogle ScholarPubMed
Santos, I, Mendes, L, Mansinho, H, et al. (2021) Nutritional status and functional status of the pancreatic cancer patients and the impact of adjacent symptoms. Clin Nutr 40, 54865493.10.1016/j.clnu.2021.09.019CrossRefGoogle ScholarPubMed
Melloul, E, Lassen, K, Roulin, D, et al. (2020) Guidelines for perioperative care for pancreatoduodenectomy: Enhanced Recovery after Surgery (ERAS) recommendations 2019. World J Surg 44, 20562084.CrossRefGoogle Scholar
Park, HM, Kang, YH, Lee, DE, et al. (2022) Effect of preoperative nutritional support in malnourished patients with pancreatobiliary cancer: a quasi-experimental study. BMC Nutr 8, 61.10.1186/s40795-022-00555-2CrossRefGoogle ScholarPubMed
Takagi, K, Domagala, P, Hartog, H, et al. (2019) Current evidence of nutritional therapy in pancreatoduodenectomy: systematic review of randomized controlled trials. Ann Gastroenterol Surg 3, 620629.CrossRefGoogle ScholarPubMed
Scaife, CL, Hewitt, KC, Mone, MC, et al. (2014) Comparison of intraoperative versus delayed enteral feeding tube placement in patients undergoing a Whipple procedure. HPB (Oxford) 16, 6269.CrossRefGoogle ScholarPubMed
Gerritsen, A, Besselink, MG, Gouma, DJ, et al. (2013) Systematic review of five feeding routes after pancreatoduodenectomy. Br J Surg 100, 589598; discussion 599.CrossRefGoogle ScholarPubMed
Wobith, M, Wehle, L, Haberzettl, D, et al. (2020) Needle Catheter Jejunostomy in patients undergoing surgery for upper gastrointestinal and pancreato-biliary cancer-impact on nutritional and clinical outcome in the early and late postoperative period. Nutrients 12, 2564.CrossRefGoogle ScholarPubMed
Zhu, X, Wu, Y, Qiu, Y, et al. (2014) Comparative analysis of the efficacy and complications of nasojejunal and jejunostomy on patients undergoing pancreaticoduodenectomy. JPEN J Parenter Enteral Nutr 38, 9961002.CrossRefGoogle ScholarPubMed
Waliye, HE, Wright, GP, McCarthy, C, et al. (2017) Utility of feeding jejunostomy tubes in pancreaticoduodenectomy. Am J Surg 213, 530533.CrossRefGoogle ScholarPubMed
Gerritsen, A, Besselink, MG, Cieslak, KP, et al. (2012) Efficacy and complications of nasojejunal, jejunostomy and parenteral feeding after pancreaticoduodenectomy. J Gastrointest Surg 16, 11441151.CrossRefGoogle ScholarPubMed
Matsugu, Y, Ito, K, Oshita, A, et al. (2022) Postoperative oral energy and protein intakes for an enhanced recovery after surgery program incorporating early enteral nutrition for pancreaticoduodenectomy: a retrospective study. Nutr Clin Pract 37, 654665.CrossRefGoogle ScholarPubMed
Hall, TC, Dennison, AR, Bilku, DK, et al. (2012) Enhanced recovery programmes in hepatobiliary and pancreatic surgery: a systematic review. Ann R Coll Surg Engl 94, 318326.CrossRefGoogle ScholarPubMed
Navez, J, Hubert, C, Dokmak, S, et al. (2020) Early versus late oral refeeding after pancreaticoduodenectomy for malignancy: a comparative Belgian-French study in two tertiary centers. J Gastrointest Surg 24, 15971604.CrossRefGoogle ScholarPubMed
Wischmeyer, PE, Carli, F, Evans, DC, et al. (2018) American society for enhanced recovery and perioperative quality initiative joint consensus statement on nutrition screening and therapy within a surgical enhanced recovery pathway. Anesth Analg 126, 18831895.CrossRefGoogle ScholarPubMed
Ikezawa, K, Takada, R, Takahashi, H, et al. (2020) Efficacy of larger-diameter plastic stent placement for preoperative biliary drainage in patients receiving neoadjuvant chemoradiation for pancreatic cancer. Pancreas 49, e20e21.10.1097/MPA.0000000000001509CrossRefGoogle ScholarPubMed
Parrish, CR, Berry, AJ & Decher, NR (2012) Post-whipple: a practical approach to nutrition management. Pract Gastroenterol 36, 3042.Google Scholar
Probst, P, Haller, S, Bruckner, T, et al. (2017) Prospective trial to evaluate the prognostic value of different nutritional assessment scores in pancreatic surgery (NURIMAS Pancreas). Br J Surg 104, 10531062.CrossRefGoogle ScholarPubMed
Kang, YK, Dong, L, Ge, Y, et al. (2019) Short-term clinical outcomes of enteral nutrition versus parenteral nutrition after surgery for pancreatic cancer: a meta-analysis. Transl Cancer Res 8, 14031411.CrossRefGoogle ScholarPubMed
Adiamah, A, Ranat, R & Gomez, D (2019) Enteral versus parenteral nutrition following pancreaticoduodenectomy: a systematic review and meta-analysis. HPB (Oxford) 21, 793801.10.1016/j.hpb.2019.01.005CrossRefGoogle ScholarPubMed
Zhu, XH, Wu, YF, Qiu, YD, et al. (2013) Effect of early enteral combined with parenteral nutrition in patients undergoing pancreaticoduodenectomy. World J Gastroenterol 19, 58895896.CrossRefGoogle ScholarPubMed
Cai, J, Yang, G, Tao, Y, et al. (2020) A meta-analysis of the effect of early enteral nutrition versus total parenteral nutrition on patients after pancreaticoduodenectomy. HPB (Oxford) 22, 2025.CrossRefGoogle ScholarPubMed
Worsh, CE, Tatarian, T, Singh, A, et al. (2017) Total parenteral nutrition in patients following pancreaticoduodenectomy: lessons from 1184 patients. J Surg Res 218, 156161.CrossRefGoogle ScholarPubMed
Aida, T, Furukawa, K, Suzuki, D, et al. (2014) Preoperative immunonutrition decreases postoperative complications by modulating prostaglandin E2 production and T-cell differentiation in patients undergoing pancreatoduodenectomy. Surgery 155, 124133.CrossRefGoogle ScholarPubMed
De Luca, R, Gianotti, L, Pedrazzoli, P, et al. (2022) Immunonutrition and prehabilitation in pancreatic cancer surgery: a new concept in the era of ERAS® and neoadjuvant treatment. Eur J Surg Oncol 49, 542549.CrossRefGoogle ScholarPubMed
Adiamah, A, Rollins, KE, Kapeleris, A, et al. (2021) Postoperative arginine-enriched immune modulating nutrition: long-term survival results from a randomised clinical trial in patients with oesophagogastric and pancreaticobiliary cancer. Clin Nutr 40, 54825485.CrossRefGoogle ScholarPubMed
Yang, FA, Chen, YC & Tiong, C (2020) Immunonutrition in patients with pancreatic cancer undergoing surgical intervention: a systematic review and meta-analysis of randomized controlled trials. Nutrients 12, 2798.CrossRefGoogle ScholarPubMed
Adiamah, A, Skořepa, P, Weimann, A, et al. (2019) The impact of preoperative immune modulating nutrition on outcomes in patients undergoing surgery for gastrointestinal cancer: a systematic review and meta-analysis. Ann Surg 270, 247256.CrossRefGoogle ScholarPubMed
Guan, H, Chen, S & Huang, Q (2019) Effects of enteral immunonutrition in patients undergoing pancreaticoduodenectomy: a meta-analysis of randomized controlled trials. Ann Nutr Metab 74, 5361.10.1159/000495468CrossRefGoogle ScholarPubMed
Wang, SY, Hung, YL, Hsu, CC, et al. (2021) Optimal perioperative nutrition therapy for patients undergoing pancreaticoduodenectomy: a systematic review with a component network meta-analysis. Nutrients 13, 4049.10.3390/nu13114049CrossRefGoogle ScholarPubMed
Probst, P, Ohmann, S, Klaiber, U, et al. (2017) Meta-analysis of immunonutrition in major abdominal surgery. Br J Surg 104, 15941608.CrossRefGoogle ScholarPubMed
Adiamah, A & Lobo, DN (2021) Post-discharge oral nutritional supplementation after surgery for gastrointestinal cancer: real or marginal gains? Clin Nutr 40, 13.CrossRefGoogle ScholarPubMed