Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-04T18:22:45.638Z Has data issue: false hasContentIssue false

DILOGARITHM IDENTITIES IN CLUSTER SCATTERING DIAGRAMS

Published online by Cambridge University Press:  21 December 2023

TOMOKI NAKANISHI*
Affiliation:
Graduate School of Mathematics Nagoya University Furo-cho, Chikusa-ku Nagoya Japan

Abstract

We extend the notion of y-variables (coefficients) in cluster algebras to cluster scattering diagrams (CSDs). Accordingly, we extend the dilogarithm identity associated with a period in a cluster pattern to the one associated with a loop in a CSD. We show that these identities are constructed from and reduced to trivial ones by applying the pentagon identity possibly infinitely many times.

MSC classification

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work is supported in part by the Japan Society for the Promotion of Science Grant No. JP16H03922.

References

Cheung, M.-W., Frías-Medina, J. B., and Magee, T., Quantization of deformed cluster Poisson varieties , Algebr. Represent. Theor., 2023. https://doi.org/10.1007/s10468-023-10209-xGoogle Scholar
Cheung, M.-W., Kelley, E., and Musiker, G., Cluster scattering diagrams and theta functions for reciprocal generalized cluster algebras, Ann. Comb. 2022. https://doi.org/10.1007/s00026-022-00623-1Google Scholar
Cheung, M.-W., Magee, T., and Nájera Chávez, A., Compactifications of cluster varieties and convexity , Int. Math. Res. Not. 14 (2022), 1085810911.CrossRefGoogle Scholar
Davison, B. and Mandel, T., Strong positivity for quantum theta bases of quantum cluster algebras , Invent. Math. 226 (2021), 725843.CrossRefGoogle Scholar
Faddeev, L. D. and Kashaev, R. M., Quantum dilogarithm , Mod. Phys. Lett. A 9, 427434.CrossRefGoogle Scholar
Faddeev, L. D. and Volkov, A. Y., Abelian current algebra and the Virasoro algebra on the lattice , Phys. Lett. 315 (1993), 311318.CrossRefGoogle Scholar
Fock, V. V. and Goncharov, A. B., Cluster ensembles, quantization and the dilogarithm , Annales Sci. de l’École Norm. Sup. 42 (2009), 865930.CrossRefGoogle Scholar
Fock, V. V. and Goncharov, A. B., The quantum dilogarithm and representations of quantum cluster varieties , Invent. Math. 172 (2009), 223286.CrossRefGoogle Scholar
Fomin, S., Shapiro, M., and Thurston, D., Cluster algebras and triangulated surfaces. Part I: Cluster complexes , Acta Math. 201 (2008), 83146.CrossRefGoogle Scholar
Fomin, S. and Zelevinsky, A., Cluster algebras I: Foundations , J. Amer. Math. Soc. 15 (2002), 497529 (electronic).CrossRefGoogle Scholar
Fomin, S. and Zelevinsky, A., Cluster algebras II. Finite type classification , Invent. Math. 154 (2003), 63121.CrossRefGoogle Scholar
Fomin, S. and Zelevinsky, A., Cluster algebras IV. Coefficients , Compos. Math. 143 (2007), 112164.CrossRefGoogle Scholar
Gekhtman, M., Nakanishi, T., and Rupel, D., Hamiltonian and Lagrangian formalisms of mutations in cluster algebras and application to dilogarithm identities , J. Integrable Syst. 2 (2017), 135.CrossRefGoogle Scholar
Gross, M., Hacking, P., Keel, S., and Kontsevich, M., Canonical bases for cluster algebras , J. Amer. Math. Soc. 31 (2018), 497608.CrossRefGoogle Scholar
Gross, M., Pandharipande, R., and Siebert, B., The tropical vertex , Duke Math. J. 153 (2010), 297362.CrossRefGoogle Scholar
Gross, M. and Siebert, B., From affine geometry to complex geometry , Ann. Math. 174 (2011), 95138.CrossRefGoogle Scholar
Jacobson, N., Lie Algebras, Dover Publications, New York, 1979.Google Scholar
Kashaev, R. M. and Nakanishi, T., Classical and quantum dilogarithm identities , SIGMA 7 (2011), 102.Google Scholar
Keller, B., “On cluster theory and quantum dilogarithm identities” in Skowroński, A. and Yamagata, K., editors, Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., Europ. Math. Soc., Helsinki, 2011, 85116.CrossRefGoogle Scholar
Kim, H. K. and Yamazaki, M., Comments on exchange graphs in cluster algebras , Exp. Math. 29 (2020), 79100.CrossRefGoogle Scholar
Kontsevich, M. and Soibelman, Y., Affine structures and non-archimedean analytic spaces , Prog. Math. 244 (2006), 321385.CrossRefGoogle Scholar
Kontsevich, M. and Soibelman, Y., Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, preprint, arXiv:0811.2435 [math.AG].Google Scholar
Lewin, L., Polylogarithms and Associated Functions, North-Holland, Amsterdam, 1981.Google Scholar
Mandel, T., Scattering diagrams, theta functions, and refined tropical curves , J. Lond. Math. Soc. 104 (2021), 22992334.CrossRefGoogle Scholar
Matsushita, K., Consistency relations of rank 2 cluster scattering diagrams of affine type and the pentagon relation, preprint, arXiv:2112.04743 [math.QA]Google Scholar
Nagao, K., Quantum dilogarithm identities , RIMS Kôkyûroku Bessatsu B28 (2011), 165170.Google Scholar
Nakanishi, T., “Periodicities in cluster algebras and dilogarithm identities. In Skowroński, A. and Yamagata, K., editors, Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., Europ. Math. Soc., Helsinki, 2011, 407444.CrossRefGoogle Scholar
Nakanishi, T., Tropicalization method in cluster algebras , Contemp. Math. 580 (2012), 95115.CrossRefGoogle Scholar
Nakanishi, T., Cluster Algebras and Scattering Diagrams, MSJ Mem. 41, Math. Soc. Japan, Tokyo, 2023.CrossRefGoogle Scholar
Reading, N., A combinatorial approach to scattering diagrams , Algebr. Comb. 3 (2020), 603636.Google Scholar
Reineke, M., Poisson automorphisms and quiver moduli , J. Inst. Math. Jussieu 9 (2009), 653667.CrossRefGoogle Scholar
Zagier, D., “The dilogarithm function” in Frontiers in Number Theory, Physics, and Geometry II, Springer, Berlin–Heidelberg, 2007, 365.Google Scholar