Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-02T15:13:23.342Z Has data issue: false hasContentIssue false

Ultrasonic Characterization of Surfaces and Interphases

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Ultrasonic waves have been used extensively for material characterization and for sensing in material process control. The waves produce small-amplitude mechanical vibrations and, depending on the mode being used, may induce both longitudinal and shear stresses in the solid. Information on the structural properties of a substance can be obtained by measuring both the velocity and the attenuation of the ultrasonic wave. The phase velocity of the wave depends on the elastic constants and density of the body while attenuation depends on microstructure and crystalline defects.

In an isotropic solid medium, which has only two independent elastic moduli, there exist two elastic waves: the longitudinal and the shear. Three kinds of bulk elastic waves may propagate in an anisotropic solid: a quasilongitudinal and two quasitransverse waves, differing in polarization and velocity. To determine the set of elastic constants, one must measure the phase velocity in several different directions relative to the crystallographic axes.

The attenuation of an ultrasonic wave is associated with absorption of elastic waves (inelastic effect) and the scattering of elastic waves by structural inhomogeneities. Scattering may be the governing attenuation mechanism in polycrystalline, composite, and ceramic materials. As a result of scattering, elastic energy is lost by the prime ultrasonic beam in the form of a stochastically scattered field, which is gradually absorbed in the material. The latter is associated with conversion of elastic into thermal energy as a result of various inelastic effects termed internal friction.

Type
Ultrasonic Nondestructive Techniques for Materials Characterization
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Truell, R.C., Elbaum, C., and Chick, B.B., in Ultrasonic Methods in Solid State Physics (Academic Press, New York, 1969).Google Scholar
2.Auld, B.A., in Acoustic Fields and Waves in Solids, vols. I and II (J. Wiley and Sons, New York, 1973).Google Scholar
3.Viktorov, I.A., in Rayleigh and Lamb Waves (Plenum Press, New York, 1967).CrossRefGoogle Scholar
4.Snider, D.R., Fredricksen, H.P., and Schneider, S.C., J. Appl. Phys. 52 (1981) p. 3215.CrossRefGoogle Scholar
5.Feng, I., Tachiki, M., Krischer, C., and Levy, M., J. Appl. Phys. 53 (1982) p. 177.CrossRefGoogle Scholar
6.Harnik, E. and Sadar, E., J. Appl. Phys. 52 (1981) p. 3705.CrossRefGoogle Scholar
7.Gorodetsky, G. and Lachterman, I., Rev. Sci. Instrum. 82 (1981) p. 1386.CrossRefGoogle Scholar
8.Ledbetter, H.M. and Moulder, J.G., J. Acous. Soc. Am. 65 (1979) p. p. 840.CrossRefGoogle Scholar
9.Lee, R.E. and White, R.M., J. Appl. Phys. 12 (1968) p. 12.Google Scholar
10.Cielo, P., Int. Adv. NDT 11 (1985) p. 175Google Scholar
11.Cooper, J.A., Crosbie, R.A., McKie, R.J., and Palmer, S.B., Proc. Ultrason. Int. 85 E25 (1985) p. 207.Google Scholar
12.Schneider, D., Schneider, H.J., and Schwarz, T., Int. J. Sci. Technol. Diamond Related Mater. (1992).Google Scholar
13.Rokhlin, S.I., Ronen, Z., and Dariel, M.P., Thin Solid Films 89 (1982) p. 109.CrossRefGoogle Scholar
14.Neubauer, W.G.N., in Physical Acoustic, vol. 10, edited by Mason, W.P. and Thurston, R.N. (Academic Press, New York, 1973) p. 61.Google Scholar
15.Chimenti, D.E., Nayfeh, A.F., and Buter, D.L., J. Appl. Phys. 53 (1982) p. 170.CrossRefGoogle Scholar
16.Hefets, M. and Rokhlin, S.I., J. Am. Ceram. Soc. 75 (1992) p. 1839.CrossRefGoogle Scholar
17.Achenbach, J.D., Kim, J.O., and Lee, Y.C., in Advances in Acoustic Microscopy, vol. 1, edited by Briggs, A. (Plenum Press, New York, 1995).Google Scholar
18.Gilmore, R.S., Tarn, K.C., Yong, J.D., and Howard, D.R., Philos. Trans. R. Soc. London A320 (1986) p. 215.Google Scholar
19.Johnson, J., Thompson, R.B., and Jamieson, E.E., in Review of Progress in QNDE, 14B, edited by Thompson, D.O. and Chimenti, D.E. (Plenum Press, New York, 1995) p. 1805.Google Scholar
20.Lee, D.A. and Corbly, D.M., IEEE Trans. Sonics Ultrason. Ind. Eng. Chem. (1977) p. 206.Google Scholar
21.Claus, R.O. and Palmer, C.H., Appl. Phys. Lett. 31 (1977) p. 547.CrossRefGoogle Scholar
22.Kumar, V. and Murty, G.S., IEEE Trans. Sonic Ultrason. Ind. Eng. Chem. (1982) p. 138.Google Scholar
23.Murty, G.S., Phys. Earth Plant. Interiors 11 (1975) p. 65.CrossRefGoogle Scholar
24.Rokhlin, S.I., Hefets, M., and Rosen, M., J. Appl. Phys. 51 (1980) p. 3579.CrossRefGoogle Scholar
25.Rokhlin, S.I., Hefets, M., and Rosen, M., J. Appl. Phys. 52 (1981) p. 2847.CrossRefGoogle Scholar
26.Nagy, P.B. and Adler, L., in Elastic Waves and Ultrasonic Nondestructive Evaluation, edited by Datta, S.K., Achenbach, J.D., and Rajapakse, Y.S. (North Holland, Amsterdam, 1990) p. 229.Google Scholar
27.Huang, W. and Rokhlin, S.I., Geophys. J. Int. 118 (1994) p. 285.CrossRefGoogle Scholar
28.Baik, J.M. and Thompson, R.B., J. Nondestr. Eval. 4 (1984) p. 177.CrossRefGoogle Scholar
29.Margetan, F.J., Thompson, R.B., Rose, J.H., and Gray, T.A., J. Nondestr. Eval. 11 (1992) p. 109.CrossRefGoogle Scholar
30.Rokhlin, S.I. and Wang, Y.J., in Rev. Prog. QNDE 10A (1991) p. 185.Google Scholar
31.Achenbach, J.D. and Kitahara, M.J., Acous. Soc. Am. 80 (1986) p. 1209.CrossRefGoogle Scholar
32.Huang, W. and Rokhlin, S.I., J. Nondestr. Eval. 11 (1992) p. 185.CrossRefGoogle Scholar
33.Rokhlin, S.I. and Wang, Y.J., J. Acoust. Soc. Am. 89 (1991) p. 503.CrossRefGoogle Scholar
34.Rokhlin, S.I. and Huang, W., J. Acoust. Soc. Am. 94 (1993) p. 3405.CrossRefGoogle Scholar
35.Rose, J.H., in Rev. Prog. QNDE 8B (1989) p. 192S.Google Scholar
36.Rose, J.H., Roberts, R.A., and Margetan, F.J., J. Nondestr. Eval. 11 (1992) p. 151.CrossRefGoogle Scholar
37.Nagy, P.B. and Adler, L., in Rev. Prog. QNDE 10A (1991) p. 177.Google Scholar
38.Nagy, P.B., J. Nondestr. Eval. 11 (1992) p. 127.CrossRefGoogle Scholar
39.Yalda-Mooshabad, I., Margetan, F.J., Gray, T.A., and Thompson, R.B., J. Nondestr. Eval. 11 (1992) p. 141.CrossRefGoogle Scholar
40.Kachanov, M., Appl. Mech. Rev. 45 (1992) p. 304.CrossRefGoogle Scholar
41.Chu, Y.C. and Rokhlin, S.I., in Rev. Prog. QNDE 12B (1993) p. 1475.Google Scholar
42.Rokhlin, S.I., Chu, Y.C., and Huang, W., in Symposium on Wave Propagation and Emerging Technologies, vol. 188, edited by Kinra, V.K., Clifton, R.J., and Johnson, G.C. (ASME, 1994) p. 29.Google Scholar
43.Huang, W., Brisuda, S., and Rokhlin, S.I., J. Acous. Soc. Am. 97 (1995) p. 807.CrossRefGoogle Scholar
44.Chu, Y.C. and Rokhlin, S.I., J. Acous. Soc. Am. 92 (1992) p. 920.CrossRefGoogle Scholar
45.Chu, Y.C. and Rokhlin, S.I., in Ultrasonic Characterization and Mechanics of Interfaces, vol. 117, edited by Rokhlin, S.I., Datta, S.K., and Rajapakse, Y.D.S. (ASME AMD, 1993) p. 113.Google Scholar
46.Huang, W., Rokhlin, S.I., and Wang, Y.J., Ultrasonics 33 (5) (1995) p. 365.CrossRefGoogle Scholar
47.Matikas, T.E. and Karpur, P., J. Appl. Phys. 74 (1993) p. 228.CrossRefGoogle Scholar
48.Matikas, T.E. and Karpur, P., in 19th Review of Progress in QNDE, vol. 12B, edited by Thompson, D.O. and Chimenti, D.E. (Plenum Press, New York, 1992) p. 1515.Google Scholar
49.Krishnamurthy, S., Matikas, T.E., Karpur, P., and Miracle, D.B., Comps. Sci. Technol. 54 (2) (1995) p. 161.CrossRefGoogle Scholar
50.Matikas, T.E., Karpur, P., Krishnamurthy, S., and Dutton, R.E., Appl. Comp. Mater. 2 (1995) p. 293.CrossRefGoogle Scholar
51.Krishnamurthy, S., Matikas, T.E., Karpur, P., and Miracle, D.B., J. Mater. Res. in press.Google Scholar
52.Waterbury, M.C., Karpur, P., Matikas, T.E., Krishnamurthy, S., and Miracle, D.B., Comps. Sci. Technol. 52 (2) (1994) p. 261.CrossRefGoogle Scholar
53.Matikas, T.E., Karpur, P., Dutton, R.E., and Kim, R., Mater. Eval. 53 (9) (1995) p. 1045.Google Scholar
54.Shaw, L.L., Matikas, T.E., Karpur, Prasanna, Hu, S., and Miracle, D.B., Composites Part B: Engineering in press.Google Scholar
55.Rokhlin, S.I., Huang, W., and Chu, Y.C., Ultrasonics 33 (5) (1995) p. 350.CrossRefGoogle Scholar
56.Rokhlin, S.I., Chu, Y.C., and Huang, W., Mech. Mater. 21 (4) (1995) p. 251.CrossRefGoogle Scholar
57.Gosz, M. and Achenbach, J.D., in Ultrasonic Characterization and Mechanics of Interfaces, vol. 177, edited by Rokhlin, S.I., Datta, S.K., and Rajapakse, Y.D.S. (ASME AMD, 1993) p. 125.Google Scholar
58.Chu, Y.C. and Rokhlin, S.I., J. Appl. Phys. 76 (1994) p. 4121.CrossRefGoogle Scholar
59.Chu, Y.C. and Rokhlin, S.I., Mech. Mater. 21 (3) (1995) p. 191.CrossRefGoogle Scholar
60.Chu, Y.C. and Rokhlin, S.I., Metall. Trans. 27 (1) (1996) p. 165.CrossRefGoogle Scholar
61.Rokhlin, S.I. and Wang, W., J. Acous. Soc. Am. 91 (1992) p. 3303.CrossRefGoogle Scholar
62.Chu, Y.C. and Rokhlin, S.I., J. Acous. Soc. Am. 95 (1994) p. 213.CrossRefGoogle Scholar
63.Chu, Y.C., Degtyar, A.D., and Rokhlin, S.I., J. Acous. Soc. Am. 95 (1994) p. 3191.CrossRefGoogle Scholar
64.Chu, Y.C. and Rokhlin, S.I., J. Acous. Soc. Am. 95 (1994) p. 3204.CrossRefGoogle Scholar
65.Bhatt, R.T., NASA TM-102360 (1989).Google Scholar
66.Chu, Y.C., Rokhlin, S.I., and Baaklini, G.Y., J. Eng. Mater. Technol. 115 (1993) p. 237.CrossRefGoogle Scholar
67.Chu, Y.C., Lavrentyev, A.I., Rokhlin, S.I., Baaklini, G.Y., and Bhatt, R.T., J. Am. Ceram. Soc. 78 (1995) p. 1809.CrossRefGoogle Scholar
68.Lavrentyev, A.I. and Rokhlin, S.I., J. Appl. Phys. 76 (8) (1994) p. 4643.CrossRefGoogle Scholar
69.Karpur, P., Matikas, T.E., Blodgett, M.P., Jira, J.R., and Blatt, D., in Special Applications and Advanced Techniques for Crack Size Determination, ASTM STP 1251, edited by Ruschau, J.J. and Donald, J.K. (American Society for Testing and Materials, Philadelphia, 1995) p. 130.CrossRefGoogle Scholar
70.Blatt, D., Karpur, P., Stubbs, D.A., and Matikas, T.E., Scripta Metall. Mater. 29 (1993) p. 851.CrossRefGoogle Scholar
71.Blatt, D., Karpur, P., Matikas, T.E., Blodgett, M.P., and Stubbs, D.A., in American Society for Composites 8th Technical Conference on Composite Materials (Technomic Publishers, Cleveland, 1993) p. 531.Google Scholar
72.Hu, S., Karpur, P., and Matikas, T.E., in 21th Annual Review of Progress in QNDE, 14B, edited by Thompson, D.O. and Chimenti, D.E. (Plenum Press, New York, 1995) p. 1263.Google Scholar