Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-11T05:09:07.236Z Has data issue: false hasContentIssue false

A Perspective on Welding Science

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Welding science is an interdisciplinary field involving metallurgy and materials science, heat, fluid, and mass transfer, and arc and plasma physics to name a few. Three areas of welding science have been the focus of much research the past few years as welding scientists attempt to understand the phenomena responsible for producing fusion welds with acceptable service properties. Broadly defined, these areas are:

1. physical and numerical modeling of the heat and fluid flow during fusion welding,

2. understanding the microstructural evolution during solidification and cooling of welds, and

3. welding of advanced materials.

This short review will focus on these fusion welding research themes to provide the reader with a flavor of the work in progress at several major government, industry, and university laboratories.

Much of both the experimental and theoretical studies that have advanced the understanding of fusion welding processes revolves around delineating the roles of mass, momentum, and energy transfer. The earliest models of fusion welding processes were analytical models of heat transfer by conduction. These models not only excluded much of the physics of the process, but assumed point or linear heat sources. Nevertheless, these models provided useful insight about the interplay between power and weld speed, particularly regarding weld pool shape. Also, although quantitative predictions of weld pool shape were generally inaccurate, predicted thermal contours and cooling rates away from the fusion zone were useful in understanding the extent of heat-affected zones.

Type
Technical Features
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rosenthal, D., Trans. ASME 48 (1946) p. 84.Google Scholar
2.Rykalin, N.N., Calculation of Heat Flow in Welding (Moscow 1951).Google Scholar
3.Christenson, N., Davies, V. de L., and Djermundsen, K., >Br. Weld. J. 12 (1965) p. 54.Br.+Weld.+J.12+(1965)+p.+54.>Google Scholar
4.Swifthook, D.T. and Giek, A.E.F., Weld. J. 52 (1973) p. 492s.Google Scholar
5.Mazumder, J. and Steen, W.M., J. Appl. Physics 51 (1980) p. 941.CrossRefGoogle Scholar
6.Chande, T., and Mazumder, J., Lasers in Metallurgy, edited by Mukherji, K. and Mazumder, J. (TMS — AIME, Warrendale, PA, 1981) p. 165.Google Scholar
7.Russo, A.J., Hadley, G.R., and Peebles, H.C., “Two Dimensional Modeling of Conduction-Mode Laser Welding,” Int. Conf. on Applied Lasers and Electro-Optics (Boston, MA, Nov. 12-15, 1984).CrossRefGoogle Scholar
8.Russo, A.J., A Users Manual for the Laser Welding Code WELD2D, Sandia Report SAND84-0397, April 1984.Google Scholar
9.Russo, A.J., Akau, R.L., and Jellison, J.L., “Thermocapillary Flow in a Pulsed-Laser Weld Pool” in Proc. Joint Korea-U.S. Heat Transfer Seminar in Thermal Engineering (Hemisphere Pub. Co., Washington, DC, 1986) p. 16.Google Scholar
10.Houldcroft, P.T, Br. Weld. J. 1 (1954) p. 468.Google Scholar
11.Woods, R.A. and Milner, D.R., Weld. J. 50 (1971) p. 163s.Google Scholar
12.Mills, G.S., Weld. J. 56 (1977) p. 186s.Google Scholar
13.Heiple, C.R. and Roper, J.R., Weld. J. 61 (1982) p. 97s.Google Scholar
14.Oreper, C.M., Eagar, T.W., and Szekely, J., Weld. J. 63 (1983) p. 307s.Google Scholar
15.Copley, S.M., Beck, D.. Esquivel, O., and Bass, M., Laser-Solid Interaction and Laser Processing-1978, edited by Ferris, S.D., Leamy, H.J., and Poate, J.M. (Amer. Inst. Phys., Conf. Proc. No. 50, NY, 1979) p. 16.Google Scholar
16.Anthony, T.R. and Cline, H.E., J. Appl. Phys. 48 (1987) p. 3888.CrossRefGoogle Scholar
17.Cieslak, M.J. and Fuerschbach, P.W., Met. Trans. B 19B (1988) p. 319.CrossRefGoogle Scholar
18.Zacharia, T., Erraslan, A.H., and Aidun, D.K., Weld. J. 67 (1988) p. 53s.Google Scholar
19.Kou, S., Sun, D.K., Met. Trans. A 16A (1985) p. 203.Google Scholar
20.Chan, C., Mazumder, J., and Chen, M.M., Met. Trans. A 15A (1984) p. 2175.CrossRefGoogle Scholar
21.Chan, C.L., Zehr, R., Mazumder, J., and Chen, M.M., Proc. 3rd Engineering Foundation Conf. on Modeling and Control of Casting and Welding Processes, edited by Kuo, S. and Mehrabian, R., (TMS-AIME, Warrendale, PA, 1988).Google Scholar
22.Kou, S. and Wang, Y.H., Met. Trans. A 17A (1986) P. 2265.CrossRefGoogle Scholar
23.Davis, M., Kapadia, P., and Dowden, J., Weld. J. 65 (1986) p. 167s.Google Scholar
24.Lin, M.L. and Eagar, T.W., Weld. J. 64 (1985) p. 163s.Google Scholar
25.Glickstein, S.S., Arc Physics and Weld Pool Behavior, Vol. 1:116 (The Welding Institute, Cambridge, England, 1980).Google Scholar
26.Tsai, N.S. and Eagar, T.W., Met. Trans. B 16B (1985) p. 841.CrossRefGoogle Scholar
27.Arata, Y., Miyake, S., Yoshioka, Y., and Matsuoka, H., Trans, of JWRI 9 (1980) p. 47.Google Scholar
28.Dunn, G.J., Eagar, T.W., Met. Trans. A 17A (1986) p. 1865.Google Scholar
29.Key, J.F., Smartt, H.B., Chan, J.W., and McIlwain, M.E., Welding Technology for Energy Applications, Proceedings 1 International Conference, compiled by David, S.A. and Slaughter, G.M., 1982.Google Scholar
30.Peebles, H.C. and Williams, R.L., The Role of the Metal Vapor Plume During Pulsed Nd: YAG Laser Welding on Aluminum 1100, Proc. Int. Conf. on Laser Materials Processing, Science, and Applications, Osaka, Japan, May 1987.Google Scholar
31.Collur, M.M., Paul, A., and DebRoy, T., Met. Trans. B 18B (1987) p. 733.CrossRefGoogle Scholar
32.Pirri, A.N., Root, R.G., and Wu, P.K.S., A1AA J. 16 (1978) p. 1296.Google Scholar
33.Knudtson, J.T., Green, W.B., and Sutton, D.G., J. Appl. Phys. 61 (1987) p. 4771.CrossRefGoogle Scholar
34.Mazumder, J., Rockstroh, T.J., Krier, H., J. Appl. Phys. 62 (1987) p. 4712.CrossRefGoogle Scholar
35.Collur, M.M. and DebRoy, T., accepted by Met. Trans. B (1989).Google Scholar
36.Kukora, A.N., Romanov, G.S., Stankevich, Y.A., and Uglov, A.A., Physics and Chemistry of Materials Treatment, Vol. 21 (1987) p. 39.Google Scholar
37.Russo, A.J., Akau, R.L., and Jellison, J.L., “Thermocapillary Flow in a Pulsed-Laser Weld Pool” in Proc. Joint Korea-U.S. Heat Transfer Seminar in Thermal Engineering (Hemisphere Pub. Co., Washington, DC, 1986) p.16.Google Scholar
38.Matsunawa, A. and Katayama, S., Proc. of ICALEO '85, San Francisco, CA, 1985.Google Scholar
39.Lewis, G.K., Dixon, R.D., Weld. J. 64 (1985) p. 49s.Google Scholar
40.Savage, W.F., Lundin, C.D., and Aronson, A.H., Weld. J. 44 (1965) p. 175s.Google Scholar
41.Brody, H.D. and Flemings, M.C., Trans. TMS-AIME 236 (1966) p. 615.Google Scholar
42.Scheil, E., Z. Metallkd. 34 (1942) p. 70.Google Scholar
43.Burden, M.H. and Hunt, J.D., J. Crystal Growth 22 (1974) p. 109.CrossRefGoogle Scholar
44.Brooks, J.A. and Baskes, M.I., Advances in Welding Science and Technology, edited by David, S.A., (ASM International, 1986) p. 83.Google Scholar
45.Cieslak, M.J., Headley, T.J., Kollie, T., and Romig, A.D. Jr., Met. Trans. A 19A (1988) p. 2319.CrossRefGoogle Scholar
46.Lecomte-Beckers, J., Met. Trans. A 19A (1988) p. 2333.CrossRefGoogle Scholar
47.Heubner, U., Kohler, M., and Prinz, B., Superalloys 88, edited by Reichman, S., Duhl, D.N., Maurer, G., Antolovich, S., and Lund, C., (TMS-AIME, Warrendale, PA, 1988) p. 437.Google Scholar
48.Sellamuthu, R. and Giamei, A.F., Met. Trans. A 17A (1986) p. 419.CrossRefGoogle Scholar
49.Schaefler, A.L., Metal Progress 56 (1949) p. 680.Google Scholar
50.Long, C.L. and DeLong, W.T, Weld. J. 52 (1973) p. 281s.Google Scholar
51.Olson, D.L., Weld. J. 64 (1985) p. 281s.Google Scholar
52.Cieslak, M.J., Headley, T.J., and Romig, A.D. Jr., Met. Trans. A 17A (1986) p. 2035.CrossRefGoogle Scholar
53.David, S.A., Vitek, J.M., and Hebble, T.L., Weld. J. 66 (1987) p. 289s.Google Scholar
54.Cieslak, M.J., Knorovsky, G.A., Headley, T.J., and Romig, A.D. Jr., Met. Trans. A 17A (1986) p. 2107.CrossRefGoogle Scholar
55.Mills, W.J., Weld. J. 63 (1984) p. 237s.Google Scholar
56.Morinaga, M., Yukawa, N., and Adachi, H., J. Phys. Soc. Jpn. 53 (1984) p. 653.CrossRefGoogle Scholar
57.David, S.A., Jemian, W.A., Liu, C.T., and Horton, J.A., Weld. J. 64 (1985) p. 22s.Google Scholar
58.David, S.A., Braski, D.N., and Liu, C.T., Weld. J. 65 (1986) p. 93s.Google Scholar
59.Santella, M.L. and David, S.A., Weld. J. 65 (1986) p. 129s.Google Scholar
60.Santella, M.L., Horton, J.A., and David, S.A., Weld. J. 67 (1988) p. 63s. 61. T.J. Mascorella, Weldability of Ti3Al-Nb Alloy, MS thesis, Ohio State University, 1987.Google Scholar
61.Mascorella, T.J., Weldability of Ti3Al-Nb Alloy, MS thesis, Ohio State University, 1987.Google Scholar
62.Baeslack, W.A. III, Cieslak, M.J., and Headley, T.J., Scripta Met. 22 (1988) p. 1155.CrossRefGoogle Scholar