Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-02T16:52:56.355Z Has data issue: false hasContentIssue false

Nanostructured Organic–Inorganic Hybrid Solar Cells

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

When light is absorbed in organic semiconductors, bound electron–hole pairs known as excitons are generated. The electrons and holes separate from each other at an interface between two semiconductors by electron transfer. It is advantageous to form well-ordered nanostructures so that all of the excitons can reach the interface between the two semiconductors and all of the charge carriers have a pathway to the appropriate electrode. This article discusses charge and exciton transport in organic semiconductors, as well as the opportunities for making highly efficient solar cells and for using carbon nanotubes to replace metal oxide electrodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Lewis, N.S., MRS Bull. 32, 808 (2007).CrossRefGoogle Scholar
2Shaheen, S.E., Ginley, D.S., Jabbour, G.E., MRS Bull. 30 (1), 10 (2005).CrossRefGoogle Scholar
3Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J., Science 270, 1789 (1995).CrossRefGoogle Scholar
4Halls, J.J.M., Walsh, C.A., Greenham, N.C., Marseglia, E.A., Friend, R.H., Moratti, S.C., Holmes, A.B., Nature 376, 498 (1995).CrossRefGoogle Scholar
5Greenham, N.C., Peng, X., Alivisatos, A.P., Phys. Rev. B 54, 17628 (1996).CrossRefGoogle Scholar
6Coakley, K.M., Srinivasan, B.S., Ziebarth, J.M., Goh, C., Liu, Y., McGehee, M.D., Adv. Funct. Mater. 15, 1927 (2005).CrossRefGoogle Scholar
7Lu, Y., Ganguli, R., Drewien, C., Anderson, M., Brinker, C.J., Gong, W., Guo, Y., Soyez, H., Dunn, B., Huang, M., Zink, J., Nature 389, 364 (1997).CrossRefGoogle Scholar
8Alberius-Henning, P., Frindell, K., Hayward, R., Kramer, E., Kramer Chmelka, B., Stucky, G., Chem. Mater. 14, 3284 (2002).CrossRefGoogle Scholar
9Crepaldi, E.L., Soler-Illia, G.J.A.A., Grosso, D., Cagnol, F., Ribot, F., Sanchez, C., J. Am. Chem. Soc. 125, 9770 (2003).CrossRefGoogle Scholar
10Coakley, K.M., Liu, Y., McGehee, M.D., Frindell, K.L., Stucky, G.D., Adv. Funct. Mater. 13 (4), 301 (2003).CrossRefGoogle Scholar
11Liu, Y., Coakley, K.M., McGehee, M.D., Proceedings of the SPIE Meeting: Organic Photovoltaics IV 5215, 187 (2004).Google Scholar
12Gregg, B.A., J. Phys. Chem. B 107, 4688 (2003).CrossRefGoogle Scholar
13Ramsdale, C.M., Barker, J.A., Arias, A.C., MacKenzie, J.D., Friend, R.H., Greenham, N.C., J. Appl. Phys. 92, 4266 (2002).CrossRefGoogle Scholar
14Coakley, K., McGehee, M., Appl. Phys. Lett. 83 (16), 3380 (2003).CrossRefGoogle Scholar
15Goh, C., Kline, R.J., McGehee, M.D., Kadnikova, E.N., Fréchet, J.M.J., Appl. Phys. Lett. 86 (12), 122110 (2005).CrossRefGoogle Scholar
16Bao, Z., Dodabalapur, A., Lovinger, A., Appl. Phys. Lett. 69 (26), 4108 (1996).CrossRefGoogle Scholar
17Sirringhaus, H., Tessler, N., Friend, R.H., Science 280, 1741 (1998).CrossRefGoogle Scholar
18Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., de Leeuw, D.M., Nature 401 (6754), 685 (1999).CrossRefGoogle Scholar
19Li, A.P., Müller, F., Birner, A., Nielsch, K., Gösele, U., J. Appl. Phys. 84 (11), 6023 (1998).CrossRefGoogle Scholar
20Goh, C., Coakley, K.M., McGehee, M.D., Nano Lett. 5 (8), 1545 (2005).CrossRefGoogle Scholar
21Gowrishankar, V., Miller, N., McGehee, M.D., Misner, M.J., Ryu, D.Y., Russell, T.P., Drockenmuller, E., Hawker, C.J., Thin Solid Films 513, 289 (2006).CrossRefGoogle Scholar
22Gowrishankar, V., Scully, S.R., McGehee, M.D., Wang, Q., Branz, H.M., Appl. Phys. Lett. 89, 252102 (2006).CrossRefGoogle Scholar
23Scully, S.R., McGehee, M.D., J. Appl. Phys. 100 (3) (2006).Google Scholar
24Markov, D.E., Amsterdam, E., Blom, P.W.M., Sieval, A.B., Hummelen, J.C., J. Phys. Chem. A 109 (24), 5266 (2005).CrossRefGoogle Scholar
25Theander, M., Yartsev, A., Zigmantas, D., Sundström, V., Mammo, W., Andersson, M.R., Inganäs, O., Phys. Rev. B 61, 12957 (2000).CrossRefGoogle Scholar
26Liu, Y.X., Summers, M.A., Edder, C., Fréchet, J.M.J., McGehee, M.D., Adv. Mater. 17 (24), 2960 (2005).Google Scholar
27Scully, S.R., Armstrong, P.B., Edder, C., Frechet, J.M.J., McGehee, M.D., Adv. Mater. 19, 2961 (2007).CrossRefGoogle Scholar
28Rowell, M.W., Topinka, M.A., McGehee, M.D., Prall, H.J., Dennler, G., Sariciftci, N.S., Hu, L., Grüner, G., Appl. Phys. Lett. 88, 233506 (2006).CrossRefGoogle Scholar