Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-31T16:07:38.940Z Has data issue: false hasContentIssue false

The Molecular Designing of Materials and Devices

Published online by Cambridge University Press:  31 March 2011

Get access

Abstract

Arthur von Hippel, a pioneer in the emergence of modern materials science, had a great goal: “the molecular designing of materials and devices.” In this article, I describe how computational materials theory has evolved over the last half century, helping to transform that goal from dream to reality. I start with two great puzzles of the 1950s: why band theory and the nearly free electron picture work. These were resolved by Landau's quasiparticle theory and by pseudopotential theory, respectively.Together with the creation and development of density functional theory, key methodological advances, and the rapid evolution of computer hardware and software, these two insights have resulted in the achievement of the quantitative prediction of the structures and properties of complex materials. Bandgapengineering and design of multilayer multifunctional materials are given as examples of “molecular design.”

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. This is an allusion to The Molecular Designing of Materials and Devices, edited by Hippel, A.R. von (MIT Press, Cambridge, Mass., 1965).Google Scholar
2. Bardeen, J., Phys. Rev. 50 (1936) p. 1098.Google Scholar
3. Cohen, M.H., Physica B 296 (2001) p. 7.CrossRefGoogle Scholar
4. Hume-Rothery, W., The Structure of Metals and Alloys (Institute of Metals, London, 1936).Google Scholar
5. Jones, H., Proc. Phys. Soc. 49 (1937) p. 243.CrossRefGoogle Scholar
6. Faber, T.E., Introduction to the Theory of Liquid Metals (Cambridge University Press, Cambridge, UK, 1972).Google Scholar
7. Herman, F., Phys. Rev. 88 (1952) p. 1210.CrossRefGoogle Scholar
8. Woodruff, T., Phys. Rev. 98 (1955) p. 1741.CrossRefGoogle Scholar
9. Woodruff, T., Phys. Rev. 103 (1956) p. 1159.CrossRefGoogle Scholar
10. Shoenberg, D., Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, UK, 1984).CrossRefGoogle Scholar
11. Harrison, W.A., Pseudopotentials in the Theory of Metals (W.A. Benjamin, New York, 1966).Google Scholar
12. Landau, L., J. Exp. Theor. Phys. (USSR) 30 (1956) p. 1058; L. Landau, J. Exp. Theor. Phys. (USSR) 32 (1957) p. 59; L.Landau, J. Exp. Theor. Phys. (USSR) 35 (1958) p. 97.Google Scholar
13. Bardeen, J., Cooper, L.N., and type="authors">Schrieffer, J.R., Phys. Rev. 106 (1957) p. 162; J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108 (1957) p. 1175.CrossRefSchrieffer,+J.R.,+Phys.+Rev.106+(1957)+p.+162;+J.+Bardeen,+L.N.+Cooper,+and+J.R.+Schrieffer,+Phys.+Rev.+108+(1957)+p.+1175.>Google Scholar
14. Kondo, J., Prog. Theor. Phys. 116 (1964) p. 37.CrossRefGoogle Scholar
15. Phillips, J.C. and type="authors">Kleinman, L., Phys. Rev. 116 (1959) pp. 287, 880.CrossRefKleinman,+L.,+Phys.+Rev.116+(1959)+pp.+287,+880.>Google Scholar
16. Cohen, M.H. and type="authors">Heine, V., Phys. Rev. 122 (1961) p. 1821.CrossRefHeine,+V.,+Phys.+Rev.122+(1961)+p.+1821.>Google Scholar
17. Cohen, M.L. and type="authors">Heine, V., in Solid State Physics, Vol. 24, edited by Ehrenreich, H., Seitz, F., and Turnbull, D. (Academic Press, NewYork, 1970) p. 37.Google Scholar
18. Slater, J.C., Phys. Rev. 81 (1951) p. 385; Adv. Quantum Chem. 6 (1972) p. 1.CrossRefGoogle Scholar
19. Hohenberg, P. and type="authors">Kohn, W., Phys. Rev. 136B (1964) p. 864.CrossRefKohn,+W.,+Phys.+Rev.136B+(1964)+p.+864.>Google Scholar
20. Kohn, W. and type="authors">Sham, L.J., Phys. Rev. 140A (1965) p. 1133.CrossRefSham,+L.J.,+Phys.+Rev.140A+(1965)+p.+1133.>Google Scholar
21. Cohen, M.L. and type="authors">Chelikowsky, J.R., Electronic Structure and Optical Properties of Semiconductors, 2nd ed. (Springer-Verlag, Berlin, 1988).CrossRefGoogle Scholar
22. Slater, J.C., Phys. Rev. 51 (1937) p. 846.CrossRefGoogle Scholar
23. Korringa, J., Physica 13 (1947) p. 392.CrossRefGoogle Scholar
24. Kohn, W. and type="authors">Rostoker, N., Phys. Rev. 94 (1954) p. 1411.CrossRefRostoker,+N.,+Phys.+Rev.94+(1954)+p.+1411.>Google Scholar
25. Anderson, O.K., Phys. Rev. B 12 (1975) p. 3060.CrossRefGoogle Scholar
26. Martin, R.M., Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, UK, 2004).CrossRefGoogle Scholar
27. Topp, W.C. and type="authors">Hopfield, J.J., Phys. Rev. B 7 (1973) p. 1295.CrossRefHopfield,+J.J.,+Phys.+Rev.+B7+(1973)+p.+1295.>Google Scholar
28. Hamann, D.R., Schluter, M., and type="authors">Chiang, C., Phys. Rev. Lett. 43 (1979) p. 1494.CrossRefChiang,+C.,+Phys.+Rev.+Lett.43+(1979)+p.+1494.>Google Scholar
29. Kleinman, L. and type="authors">Bylander, D.L., Phys. Rev. Lett. 48 (1982) p. 1425.CrossRefBylander,+D.L.,+Phys.+Rev.+Lett.48+(1982)+p.+1425.>Google Scholar
30. Vanderbilt, D., Phys Rev. B 41 (1990) p. 7892.CrossRefGoogle Scholar
31. Car, R. and type="authors">Parinello, M., Phys. Rev. Lett. 55 (1985) p. 2471.CrossRefParinello,+M.,+Phys.+Rev.+Lett.55+(1985)+p.+2471.>Google Scholar
32. Kotliar, G. and type="authors">Vollhardt, D., Physics Today 57 (2004) p. 53.CrossRefVollhardt,+D.,+Physics+Today57+(2004)+p.+53.>Google Scholar
33. Hybertson, M.S. and type="authors">Louie, S.G., Phys. Rev. B 34 (1986) p. 2920.CrossRefLouie,+S.G.,+Phys.+Rev.+B34+(1986)+p.+2920.>Google Scholar
34. Peress, M., Binggelli, N., and type="authors">Baldereschi, A., J. Phys. D: Appl. Phys. 31 (1998) p. 1273.CrossRefBaldereschi,+A.,+J.+Phys.+D:+Appl.+Phys.31+(1998)+p.+1273.>Google Scholar
35. Hippel, A. von, Rev. Mod. Phys. 22 (1950) p. 221.CrossRefGoogle Scholar
36. He, L., Neaton, J.B., Cohen, M.H., Vanderbilt, D., and type="authors">Homes, C.C., Phys. Rev. B 65 214112 (2002).CrossRefHomes,+C.C.,+Phys.+Rev.+B65214112+(2002).>Google Scholar
37. Cohen, M.H., Neaton, J.B., He, L., and type="authors">Vanderbilt, D., J. Appl. Phys. 94 (2003) p. 3299.CrossRefVanderbilt,+D.,+J.+Appl.+Phys.94+(2003)+p.+3299.>Google Scholar