Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-02T17:09:50.470Z Has data issue: false hasContentIssue false

Metamorphic epitaxy for multijunction solar cells

Published online by Cambridge University Press:  14 March 2016

Ryan M. France
Affiliation:
National Renewable Energy Laboratory, USA; ryan.france@nrel.gov
Frank Dimroth
Affiliation:
Department III–V Epitaxy and Solar Cells, Fraunhofer Institute for Solar Energy Systems ISE, Germany; frank.dimroth@ise.fraunhofer.de
Tyler J. Grassman
Affiliation:
Department of Materials Science and Engineering, and Department of Electrical and Computer Engineering, The Ohio State University, USA; grassman.5@osu.edu
Richard R. King
Affiliation:
School of Electrical, Computer, and Energy Engineering, Arizona State University, USA; richard.r.king@asu.edu
Get access

Abstract

Multijunction solar cells have proven to be capable of extremely high efficiencies by combining multiple semiconductor materials with bandgaps tuned to the solar spectrum. Reaching the optimum set of semiconductors often requires combining high-quality materials with different lattice constants into a single device, a challenge particularly suited for metamorphic epitaxy. In this article, we describe different approaches to metamorphic multijunction solar cells, including traditional upright metamorphic, state-of-the-art inverted metamorphic, and forward-looking multijunction designs on silicon. We also describe the underlying materials science of graded buffers that enables metamorphic subcells with low dislocation densities. Following nearly two decades of research, recent efforts have demonstrated high-quality lattice-mismatched multijunction solar cells with very little performance loss related to the mismatch, enabling solar-to-electric conversion efficiencies over 45%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

France, R.M., Geisz, J.F., Garcia, I., Steiner, M.A., McMahon, W.E., Friedman, D.J., Moriarty, T.E., Osterwald, C., Ward, J.S., Duda, A., Young, M., Olavarria, W.J., IEEE J. Photovolt. (2015), doi:10.1109/JPHOTOV.2015.2505182.Google Scholar
Dimroth, F., Tibbits, T.N.D., Niemeyer, M., Predan, F., Beutel, P., Karcher, C., Oliva, E., Siefer, G., Lackner, D., Bett, A.W., Krause, R., Drazek, C., Guiot, E., Wasselin, J., Tauzin, A., Signamarcheix, T., IEEE J. Photovolt. 6, 343 (2016).Google Scholar
Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Prog. Photovolt. 23, 1 (2015).Google Scholar
Sheng, X., Bower, C.A., Bonafede, S., Wilson, J.W., Fisher, B., Meitl, M., Yuen, H., Wang, S., Shen, L., Banks, A.R., Corcoran, C.J., Nuzzo, R.G., Burroughts, S., Rogers, J.A., Nat. Mater. 13, 593 (2014).Google Scholar
Friedman, D.J., Curr. Opin. Solid State Mater. Sci. 14, 131 (2010).Google Scholar
Olson, J.M., Friedman, D.J., Kurtz, S., in Handbook of Photovoltaic Science and Engineering, Luque, A., Hegedus, S., Eds. (Wiley, West Sussex, England, 2003), p. 359.CrossRefGoogle Scholar
Dimroth, F., Kurtz, S., MRS Bull. 32, 230 (2007).Google Scholar
Philipps, S.P., Guter, W., Welser, E., Schone, J., Steiner, M., Bett, A.W., in Next Generation of Photovoltaics, Lopez, A.B.C., Vega, A.M., Luque, A., Eds. (Springer, Berlin/Heidelberg, Germany, 2012), p. 1.Google Scholar
France, R.M., Geisz, J.F., Steiner, M.A., Friedman, D.J., Ward, J.S., Olson, J.M., Olavarria, W., Young, M., Duda, A., IEEE J. Photovolt. 3, 893 (2013).Google Scholar
Steiner, M.A., Geisz, J.F., Garcia, I., Friedman, D.J., Duda, A., Olavarria, W.J., Young, M., Kuciauskas, D., Kurtz, S.R., IEEE J. Photovolt. 3, 1437 (2013).Google Scholar
Fetzer, C.M., Jun, B., Edmonds, K., Khemthong, S., Rouhani, K., Cravens, R., Bardfield, R., Gillanders, M., “Production Ready 30% Efficient Triple Junction Space Solar Cells,” presented at the 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, 2008.Google Scholar
Roesener, T., “High-Efficiency III–V Multijunction Solar Cells on Silicon Substrate,” PhD thesis, Universität Konstanz, Germany (2013).Google Scholar
Yamaguchi, M., Amano, C., J. Appl. Phys. 58, 3601 (1985).Google Scholar
Andre, C.L., Wilt, D.M., Pitera, A.J., Lee, M.L., Fitzgerald, E.A., Ringel, S.A., J. Appl. Phys. 98, 014502 (2005).Google Scholar
Fitzgerald, E.A., Mater. Sci. Rep. 7, 91 (1991).CrossRefGoogle Scholar
Ringel, S.A., Grassman, T.J., in III-V Compound Semiconductors: Integration with Silicon-Based Microelectronics, Li, T., Ed. (CRC Press, Boca Raton, FL, 2011), p. 523.Google Scholar
Hull, D., Bacon, D.J., Introduction to Dislocations, 5th ed. (Butterworth-Heinemann, Oxford, 2011).Google Scholar
Hull, R., Bean, J.C., in Strained-Layer Superlattices: Materials Science and Technology, Pearsall, T.P., Ed. (Academic Press, San Diego, 1991), p. 1.Google Scholar
Dodson, B.W., Tsao, J.Y., Annu. Rev. Mater. Sci. 19, 419 (1989).Google Scholar
Beanland, R., Dunstan, D.J., Goodhew, P.J., Adv. Phys. 45, 87 (1996).Google Scholar
Matthews, J.W., Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974).Google Scholar
People, R., Bean, J.C., Appl. Phys. Lett. 47, 322 (1985).CrossRefGoogle Scholar
Dodson, B.W., Tsao, J.Y., Appl. Phys. Lett. 51, 1325 (1987).CrossRefGoogle Scholar
Fitzgerald, E.A., Kim, A.Y., Currie, M.T., Langdo, T.A., Taraschi, G., Bulsara, M.T., Mater. Sci. Eng. B 67, 53 (1999).Google Scholar
Fitzgerald, E.A., Xie, Y.H., Monroe, D., Silverman, P.J., Kuo, J.M., Kortan, A.R., Thiel, F.A., Weir, B.E., J. Vac. Sci. Technol. B 10, 1807 (1992).Google Scholar
Yonenaga, I., Mater. Trans. 46, 1979 (2005).Google Scholar
Klinger, V., Roesener, T., Lorenz, G., Petzold, M., Dimroth, F., Thin Solid Films 548, 358 (2013).CrossRefGoogle Scholar
Freund, L.B., J. Appl. Phys. 68, 2073 (1990).CrossRefGoogle Scholar
Schwarz, K.W., Phys. Rev. Lett. 78, 4785 (1997).Google Scholar
Samavedam, S.B., Fitzgerald, E.A., J. Appl. Phys. 81, 3108 (1997).CrossRefGoogle Scholar
Currie, M.T., Samavedam, S.B., Langdo, T.A., Leitz, C.W., Fitzgerald, E.A., Appl. Phys. Lett. 72, 1718 (1998).Google Scholar
Quitoriano, N.J., Fitzgerald, E.A., J. Appl. Phys. 102, 033511 (2007).Google Scholar
McMahon, W.E., Kang, J., France, R.M., Norman, A.G., Friedman, D.J., Wei, S.-H., J. Appl. Phys. 114, 203506 (2013).CrossRefGoogle Scholar
France, R.M., McMahon, W.E., Norman, A.G., Geisz, J.F., Romero, M.J., J. Appl. Phys. 112, 023520 (2012).Google Scholar
France, R.M., Garcia, I., McMahon, W.E., Norman, A.G., Simon, J., Geisz, J.F., Friedman, D.J., Romero, M.J., IEEE J. Photovoltaics 4, 190 (2013).Google Scholar
Sieg, R.M., Carlin, J.A., Boeckl, J.J., Ringel, S.A., Currie, M.T., Ting, S.M., Langdo, T.A., Taraschi, G., Fitzgerald, E.A., Keyes, B.M., Appl. Phys. Lett. 73, 3111 (1998).Google Scholar
Ringel, S.A., Carlin, J.A., Andre, C.L., Hudait, M.K., Gonzalez, M., Wilt, D.M., Clark, E.B., Jenkins, P., Scheiman, D., Allerman, A., Fitzgerald, E.A., Leitz, C.W., Prog. Photovolt. 10, 417 (2002).Google Scholar
Dimroth, F., Lanyi, P., Schubert, U., Bett, A.W., J. Electron. Mater. 29, 42 (2000).Google Scholar
King, R.R., Law, D.C., Edmonson, K.M., Fetzer, C.M.. Kinsey, G.S., Yoon, H., Sherif, R.A., Karam, N.H., Appl. Phys. Lett. 90, 183516 (2007).CrossRefGoogle Scholar
Guter, W., Schöne, J., Philipps, S.P., Steiner, M., Siefer, G., Wekkeli, A., Welser, E., Oliva, E., Bett, A.W., Dimroth, F., Appl. Phys. Lett. 94, 223504 (2009).CrossRefGoogle Scholar
Liu, X.-Q., Fetzer, C.M., Rehder, E., Cotal, H., Mesropian, S., Law, D., King, R.R., J. Cryst. Growth 352, 186 (2012).CrossRefGoogle Scholar
King, R.R., Bhusari, D., Larrabee, D., Liu, X.-Q., Rehder, E., Edmonson, K., Cotal, H., Jones, R.K., Ermer, J.H., Fetzer, C.M., Law, D.C., Karam, N.H., Prog. Photovolt. 20, 801 (2012).Google Scholar
Wanlass, M.W., Ahrenkiel, S.P., Ahrenkiel, R.K., Albin, D.S., Carapella, J.J., Duda, A., Geisz, J.F., Kurtz, S., Moriarty, T., “Lattice-Mismatched Approaches for High-Performance, III–V Photovoltaic Energy Converters,” presented at the 31st IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, 2005.Google Scholar
Geisz, J.F., Kurtz, S.R., Wanlass, M.W., Ward, J.S., Duda, A., Friedman, D.J., Olson, J.M., McMahon, W.E., Moriarty, T., Kiehl, J., Appl. Phys. Lett. 91, 023502 (2007).CrossRefGoogle Scholar
Geisz, J.F., Friedman, D.J., Ward, J.S., Duda, A., Olavarria, W.J., Moriarty, T.E., Kiehl, J.T., Romero, M.J., Norman, A.G., Jones, K.M., Appl. Phys. Lett. 93, 123505 (2008).Google Scholar
Patel, P., Aiken, D., Chumney, D., Cornfeld, A., Lin, Y., Mackos, C., McCarty, J., Miller, N., Sharps, P., Stan, M., “Initial Results of the Monolithically Grown Six-Junction Inverted Metamorphic Multi-Junction Solar Cell,” presented at the 38th IEEE Photovoltaic Specialists Conference, Austin, TX, 2012.Google Scholar
Garcia, I., France, R.M., Geisz, J.F., McMahon, W.E., Steiner, M.A., Johnston, S., Friedman, D.J., IEEE J. Photovolt. 6, 366 (2016).Google Scholar
Volz, K., Beyer, A., Witte, W., Ohlmann, J., Nemeth, I., Kunert, B., Stolz, W., J. Cryst. Growth 315, 37 (2011).CrossRefGoogle Scholar
Supplie, O., Bruckner, S., Romanyuk, O., Doscher, H., Hohn, C., May, M.M., Kleinschmidt, P., Grosse, F., Hannappel, T., Phys. Rev. B Condens. Matter 90, 235301 (2014).Google Scholar
Grassman, T.J., Brenner, M.R., Rajagopalan, S., Unocic, R.R., Dehoff, R.R., Mills, M., Ringel, S.A., Appl. Phys. Lett. 94, 235301 (2009).Google Scholar
Grassman, T.J., Carlin, J.A., Galiana, B., Yang, L.-M., Yang, F., Mills, M.J., Ringel, S.A., Appl. Phys. Lett. 102, 142102 (2013).Google Scholar
Garcia-Tabares, E., Rey-Stolle, I., Sol. Energy Mater. 124, 17 (2014).Google Scholar
Feifel, M., Rachow, T., Benick, J., Ohlmann, J., Janz, S., Hermle, M., Dimroth, F., Lackner, D., IEEE J. Photovolt. 6, 384 (2016).Google Scholar
Grassman, T.J., Chmielewski, D.J., Carnevale, S.D., Carlin, J.A., Ringel, S.A., IEEE J. Photovolt. 6, 326 (2016).Google Scholar
Carlin, A.M., Fitzgerald, E.A., Ringel, S.A., “III–V/SiGe on Si Radiation Hard Space Cells with V oc>2.6V,” presented at the 42nd IEEE Photovoltaic Specialists Conference, New Orleans, LA, 2015.2.6V,”+presented+at+the+42nd+IEEE+Photovoltaic+Specialists+Conference,+New+Orleans,+LA,+2015.>Google Scholar
Lang, J.R., Faucher, J., Tomasulo, S., Yaung, K.N., Lee, M.L., Appl. Phys. Lett. 103, 092102 (2013).Google Scholar