Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-02T17:10:33.160Z Has data issue: false hasContentIssue false

Ion-Beam Analysis of Polymer Surfaces and Interfaces

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Ion-beam analysis of chemical composition as a function of depth is by now well-established for inorganic materials and is an important method of investigating growth of thin films. It has been applied to polymers much more recently, perhaps because fairly obvious problems with radiation damage discouraged workers in this field initially. Ion-beam analysis has developed, however, into a analytical tool that complements other methods, such as x-ray photoelectron spectroscopy and neutron reflection, very well. The purpose of this short article is to give the reader an introduction to its current uses in polymers.

The ion beams of ion-beam analysis are typically highly energetic (1–5 MeV) beams of 4He++. While other beams are used, for example, 3He and 15N, alpha particle beams are used in the vast majority of experiments reported in the literature. Two major categories of experiments are carried out with such beams. Rutherford backscattering (RBS) spectrometry to detect heavy elements in the polymer and forward recoil spectrometry (FRES) (also known as elastic recoil detection) to detect the isotopes hydrogen and deuterium. The basic principles for each method are similar.

Type
Polymer Surfaces and Interfaces
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chu, W-C., Mayer, J.W., and Nicolet, M-A., Backscattering Spectrometry (Academic Press, New York, 1978).CrossRefGoogle Scholar
2.Feldman, L.C. and Mayer, J.W., Fundamentals of Surface and Thin Film Analysis (North-Holland, Amsterdam, 1986).Google Scholar
3.Doyle, B.L. and Peercy, P.S., Appl. Phys. Lett. 34 (1979) p. 881.CrossRefGoogle Scholar
4.Mills, P.J., Green, P.F., Palmstrøm, C.J., Mayer, J.W., and Kramer, E.J., Appl. Phys. Lett. 45 (1984) p. 957.CrossRefGoogle Scholar
5.Doolittle, L., Nucl. Instrum. Meth. B 9 (1985) p. 344; Nucl. Instrum. Meth. B 15 (1986) p. 227. The program (RUMP) described is available from Computer Graphics Services, Ithaca, NY.CrossRefGoogle Scholar
6.Mills, P.J., Palmstrøm, C.J., and Kramer, E.J., J. Mater. Sci. 21 (1986) p. 1457.Google Scholar
7.Mills, P.J. and Kramer, E.J., J. Materials Sci. 21 (1986) p. 4151.CrossRefGoogle Scholar
8.Lasky, R.C., Kramer, E.J., and Hui, C-Y., Polymer 29 (1988) p. 1131.CrossRefGoogle Scholar
9.Gall, T.P., Lasky, R.C., and Kramer, E.J., Polymer 31 (1990) p. 1491.CrossRefGoogle Scholar
10.Tromp, R., LeGoues, F.K., and Ho, P.S., J. Vac. Sci. Technol. A3 (1985) p. 782.CrossRefGoogle Scholar
11.Kramer, E.J., Green, P.F., and Palmstrøm, C.J., Polym. 25 (1984) p. 473.CrossRefGoogle Scholar
12.Green, P.F., Palmstrøm, C.J., Mayer, J.W., and Kramer, E.J., Macromolecules 18 (1985) p. 501.CrossRefGoogle Scholar
13.Lee, K-W., Kowalczyk, S.P., and Shaw, J.M., Macromolecules 24 (1990) p. 2097.CrossRefGoogle Scholar
14.Stoffel, N.C., Hsieh, M., Chandra, S., and Kramer, E.J., MSC Report #7940, Chem. Mater. (in press).Google Scholar
15.Zhang, C.H., Stoffel, N.C., and Kramer, E.J. (unpublished data).Google Scholar
16.Green, P.F., Mills, P.J., Palmstrøm, C.J., Mayer, J.W., and Kramer, E.J., Phys. Rev. Lett. 53 (1984) p. 2145.CrossRefGoogle Scholar
17.Green, P.F. and Kramer, E.J., Macromolecules 19 (1986) p. 1108.CrossRefGoogle Scholar
18.Tead, S.F. and Kramer, E.J., Macromolecules 21 (1988) p. 1513.CrossRefGoogle Scholar
19.Shull, K.R., Kramer, E.J., Hadziioannou, G., Antonietti, M., and Sillescu, H., Macromolecules 21 (1988) p. 2578.CrossRefGoogle Scholar
20.Shull, K.R., Kramer, E.J., and Fetters, L.J., Nature 345 (1990) p. 790.CrossRefGoogle Scholar
21.Shull, K.R., Dai, K.H., Kramer, E.J., Fetters, L.J., Antonietti, M., and Sillescu, H., Macromolecules 24 (1991) p. 505.CrossRefGoogle Scholar
22.Mills, P.J., Mayer, J.W., Kramer, E.J., Hadziioannou, G., Lutz, P., Strazielle, C., Rempp, P., and Kovacs, A.J., Macromolecules 20 (1987) p. 513.CrossRefGoogle Scholar
23.Tead, S.F., Kramer, E.J., Hadziioannou, G., Antonietti, M., Sillescu, H., Lutz, P., and Strazielle, C., Macromolecules 25 (1992) p. 3942.CrossRefGoogle Scholar
24.Shull, K.R., Kramer, E.J., Bates, F.S., and Rosedale, J.H., Macromolecules 24 (1991) p. 1383.CrossRefGoogle Scholar
25.Composto, R.J., Kramer, E.J., and White, D.M., Polym. 31 (1990) p. 2320.CrossRefGoogle Scholar
26.Kim, E., Kramer, E.J., and Osby, J.O., Macromolecules 28 (1995) p. 1979.CrossRefGoogle Scholar
27.Composto, R.J., Kramer, E.J., and White, D.M., Nature 328 (1987) p. 234.CrossRefGoogle Scholar
28.Composto, R.J., Kramer, E.J., and White, D.M., Macromolecules 21 (1988) p. 2580.CrossRefGoogle Scholar
29.Kim, E., Kramer, E.J., Wu, W.C., and Garrett, P.D., Polym. 35 (1994) p. 5706.CrossRefGoogle Scholar
30.Composto, R.J., Mayer, J.W., Kramer, E.J., and White, D.M., Phys. Rev. Lett. 59 (1986) p. 1312.CrossRefGoogle Scholar
31.Kim, E., Kramer, E.J., Osby, J.O., and Walsh, D.J., J. Polym. Sci.-Polym.-Phys. 33 (1995) p. 467.CrossRefGoogle Scholar
32.Bates, F.S. and Wignall, G.D., Phys. Rev. Lett. 57 (1986) p. 1429.CrossRefGoogle Scholar
33.Green, P.F. and Doyle, B.L., Phys. Rev. Lett. 57 (1986) p. 2407.CrossRefGoogle Scholar
34.Jones, R.A.L., Kramer, E.J., Rafailovich, M.H., Sokolov, J., and Schwarz, S.A., Phys. Rev. Lett. 62 (1989) p. 280.CrossRefGoogle Scholar
35.Jones, R.A.L. and Kramer, E.J., Philos. Mag. 62 (1990) p. 129.CrossRefGoogle Scholar
36.Jones, R.A.L., Norton, L.J., Kramer, E.J., Composto, R.J., Stein, R.S., Russell, T.P., Mansour, A., Karim, A., Felcher, G.P., Rafailovich, M.H., Sokolov, J., Zhao, X., and Schwarz, S.A., Europhysics Lett. 12 (1990) p. 41.CrossRefGoogle Scholar
37.Zhao, X., Zhao, W., Sokolov, J., Rafailovich, M., Schwarz, S.A., Wilkins, B.J., Jones, R.A.L., and Kramer, E.J., Macromolecules 24 (1991) p. 5991.CrossRefGoogle Scholar
38.Hariharan, A., Kumar, S.K., and Russell, T.P., J. Chem. Phys. 98 (1993) p. 4163.CrossRefGoogle Scholar
39.Kim, E., Kramer, E.J., Garrett, P.D., Mendelson, R.A., and Wu, W.C., Polym. 36 (1995) p. 2427.CrossRefGoogle Scholar
40.Norton, L.J., Kramer, E.J., Bates, F.S., Gehlsen, M.D., Jones, R.A.L., Karim, A., Felcher, G.P., and Kleb, R., Macromolecules, in press.Google Scholar
41.Brüder, F. and Brenn, R., Europhys. Lett. 22 (1993) p. 707.CrossRefGoogle Scholar
42.Shull, K.R., Kramer, E.J., Hadziioannou, G., and Tang, W., Macromolecules 23 (1990) p. 4780.CrossRefGoogle Scholar
43.Dai, K.H., Kramer, E.J., and Shull, K.R., Macromolecules 25 (1992) p. 220.CrossRefGoogle Scholar
44.Dai, K.H. and Kramer, E.J., Polym. 35 (1994) p. 157.CrossRefGoogle Scholar
45.Dai, K.H. and Kramer, E.J., J. Polym. Sci.-Polym. Phys. 32 (1994) p. 1943.CrossRefGoogle Scholar
46.Iyengar, D.R., Perutz, S.M., Dai, C-A., Ober, C.K., and Kramer, E.J., Macromolecules in press.Google Scholar
47.Green, P.F. and Russell, T.P., Macromolecules 25 (1992) p. 783.CrossRefGoogle Scholar
48.Calistri-Yeh, M., PhD dissertation, Cornell University (1995).Google Scholar
49.Brown, H.R., Deline, V.R., and Green, P.F., Nature 341 (1989) p. 221.CrossRefGoogle Scholar
50.Cretan, C.F., Kramer, E.J., Hui, C-Y., and Brown, H.R., Macromolecules 25 (1992) p. 3075.CrossRefGoogle Scholar
51.Washiyama, J., Kramer, E.J., and Hui, C-Y., Macromolecules 26 (1993) p. 2928.CrossRefGoogle Scholar
52.Norton, L.J., Smigolova, V., Pralle, M.U., Hubenko, A., Dai, K.H., Kramer, E.J., Hahn, S., Berglund, C., and DeKoven, B., Macromolecules 28 (1995) p. 1999.CrossRefGoogle Scholar
53.Genzer, J., Rothman, J.B., and Composto, R.J., Nucl. lustrum. Meth. B 86 (1994) p. 345.CrossRefGoogle Scholar
54.Faldi, A., Genzer, J., and Composto, R.J., Phys. Rev. Lett. 74 (1995) p. 3388.CrossRefGoogle Scholar
55.Sokolov, J., Rafailovich, M.H., Jones, R.A.L., and Kramer, E.J., Appl. Phys. Lett. 54 (1989) p. 590.CrossRefGoogle Scholar
56.Kramer, E.J., Physica B 173 (1991) p. 189.CrossRefGoogle Scholar
57.Jones, R.A.L., Norton, L.J., Kramer, E.J., Bates, F.S., and Wiltzius, P., Phys. Rev. Lett. 66 (1991) p. 1326.CrossRefGoogle Scholar
58.Brüder, F. and Brenn, R., Phys. Rev. Lett. 69 (1992) p. 624.CrossRefGoogle Scholar
59.Krausch, G., Dai, C-A., Kramer, E.J., and Bates, F.S., Phys. Rev. Lett. 71 (1993) p. 3669.CrossRefGoogle Scholar
60.Krausch, G., Dai, C-A., Kramer, E.J., Marko, J.F., and Bates, F.S., Macromolecules 26 (1993) p. 5566.CrossRefGoogle Scholar
61.Krausch, G., Kramer, E.J., Bates, F.S., Marko, J.F., Brown, G., and Chakrabarti, A., Macromolecules 27 (1994) p. 6768.CrossRefGoogle Scholar
62.Kim, E., Krausch, G., Kramer, E.J., and Osby, J.O., Macromolecules 27 (1994) p. 5927.CrossRefGoogle Scholar
63.Payne, R.S., Clough, A.S., Murphy, P., and Mills, P.J., Nucl. lustrum. Meth. B 42 (1989) p. 130.CrossRefGoogle Scholar
64.Chaturvedi, U.K., Steiner, U., Zak, O., Krausch, G., Schatz, G., and Klein, J., Appl. Phys. Lett. 56 (1990) p. 1228.CrossRefGoogle Scholar
65.Chaturvedi, U.K., Steiner, U., Zak, O., Krausch, G., and Klein, J., Phys. Rev. Lett. 63 (1989) p. 616.CrossRefGoogle Scholar
66.Endisch, D., Rauch, F., Götzelmann, A., Reiter, G., and Stamm, M., Nucl. lustrum. Meth. B 62 (1992) p. 513.CrossRefGoogle Scholar