Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-09T12:22:32.347Z Has data issue: false hasContentIssue false

Ion Beam Mixing: Amorphous, Crystalline, and Quasicrystalline Phases

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In the last quarter of a century, modification of the near-surface region of materials has become of major technological importance. The principal surface modification technique utilized in integrated circuit technology is ion implantation, a technique which has more recently been applied in the metal-processing industry as well. The very high doses required for applications such as increasing the hardness of steel or forming buried oxide layers in silicon have pushed ion implantation to its limits. Ion beam mixing, the intermixing of surface layers by the penetration of energetic ions through them, was developed to overcome these limits. Additionally, ion beam mixing has been able to produce new phases, amorphous and crystalline, which have technologically and scientifically interesting properties.

Ion beam mixing was studied extensively in silicide forming systems, due partly to applications to electrical contacts for silicon devices. In intermetallic alloy systems, research has concentrated on determining the interplay between the formation of amorphous and crystalline structures and that between equilibrium and metastable phases. Although over 50 alloy systems have been studied, this article will concentrate on the Al-based alloys. These alloys, particularly the near-noble-metal alloys, demonstrate nearly all the features associated with ion-induced phase formation. Further, Al-rich refractory metal alloys form quasicrystalline icosahe-dral alloys. Ion-beam mixing results parallel those of splat-quenching, the technique first used to produce the fivefold symmetric structure.

Type
Advances in Ion Beam Processing and Synthesis
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Myers, S.M., in Ion Implantation, edited by Hirvonen, J.K., Vol. 18 in Treatise on Materials Science and Technology, edited by Herman, H. (Academic Press, New York, 1980) p. 51.Google Scholar
2.Poate, J.M. and Cullis, A.G., in Ion Implantation, edited by Hirvonen, J.K., Vol. 18 in Treatise on Materials Science and Technology, edited by Herman, H. (Academic Press, New York, 1980) p. 85.Google Scholar
3.Liau, Z-L. and Mayer, J.W., in Ion Implantation, edited by Hirvonen, J.K., Vol. 18 in Treatise on Materials Science and Technology, edited by Herman, H. (Academic Press, New York, 1980) p. 17.Google Scholar
4.Tsaur, B-Y., Liau, Z-L., Lau, S.S., and Mayer, J.W., Thin Solid Films 63 (1979) p. 31.CrossRefGoogle Scholar
5.Mayer, J.W., Lau, S.S., Tsaur, B-Y., Poate, J.M., and Hirvonen, J.K., in Ion Implantation Metallurgy, edited by Preece, C.M. and Hirvonen, J.K. (The Metallurgical Society, Warrendale, PA, 1980).Google Scholar
6.Duwez, P., Willens, R.H., and Klement, W., J. Appl. Phys. 31 (1960) p. 1136.CrossRefGoogle Scholar
7.Duwez, P., Ann. Rev. Mater. Sci. 6 (1976) p. 83.CrossRefGoogle Scholar
8.Tsaur, B-Y., Lau, S.S. and Mayer, J.W., Appl. Phys. Lett. 36 (1980) p. 823.CrossRefGoogle Scholar
9.Tsaur, B-Y., Lau, S.S., Hung, L.S., and Mayer, J.W., Nucl. Instrum. Methods 182/183 (1981) p. 67.CrossRefGoogle Scholar
10.Colgan, E.G., PhD Thesis, Cornell University, 1987.Google Scholar
11.Nastasi, M., Hung, L.S., and Mayer, J.W., Appl. Phys. Lett. 43 (1983) p. 831.CrossRefGoogle Scholar
12.Nastasi, M., Barbour, J.C., Gyulai, J., Hung, L.S., and Mayer, J.W., J. Vac. Sci. Technol. A3 (1985) p. 1903.CrossRefGoogle Scholar
13.Hung, L.S., Nastasi, M., Gyulai, J., and Mayer, J.W., Appl. Phys. Lett. 42 (1983) p. 672.CrossRefGoogle Scholar
14.Nastasi, M., Hung, L.S., Johnson, H.H., Mayer, J.W., and Williams, J.M., J. Appl. Phys. 57 (1985) p. 1050.CrossRefGoogle Scholar
15.Nastasi, M., Lilienfeld, D., Johnson, H.H., and Mayer, J.W., J. Appl. Phys. 59 (1986) p. 4011.CrossRefGoogle Scholar
16.Lilienfeld, D. and Mayer, J.W., in Beam-Solid Interaction and Transient Processing, edited by Picraux, S.T.et al., (Mater. Res. Soc. Proc. 74, Pittsburgh, PA) to be published.Google Scholar
17.Hong, Q.Z. and Lilienfeld, D.A., unpublished data, 1986.Google Scholar
18. Powder Diffraction File (Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 1984).Google Scholar
19.Lilienfeld, D.A., Nastasi, M., Johnson, H.H., Ast, D.G., and Mayer, J.W., Phys. Rev. Lett. 55 (1985) p. 1587.CrossRefGoogle Scholar
20.Knapp, J.A. and Follstaedt, D.M., Phys. Rev. Lett. 55 (1985) p. 1591.CrossRefGoogle Scholar
21.Lilienfeld, D.A., Nastasi, M., Johnson, H.H., Ast, D.G., and Mayer, J.W., J. Mater. Res. 2 (1986) p. 237.CrossRefGoogle Scholar
22.Lilienfeld, D.A., Nastasi, M., Johnson, H.H., Ast, D.G., and Mayer, J.W., Phys. Rev. B34 (1986) p. 2985.CrossRefGoogle Scholar
23.Shectman, D., Blech, I., Gratias, D., and Cahn, J.W., Phys. Rev. Lett. 53 (1984) p. 1951.CrossRefGoogle Scholar
24.Cahn, J.W., MRS Bulletin 11 (2) (1986) p. 9.Google Scholar
25.Levine, D. and Steinhardt, P.J., Phys. Rev. Lett. 53 (1985) p. 2477.CrossRefGoogle Scholar
26.Gardener, Martin, Sci. Amer. 236 (1977) p. 110.CrossRefGoogle Scholar
27.Bancel, P., Heiney, P.A., Stephens, P.W., Goldman, A.I., and Horn, P.M., Phys. Rev. Lett. 54 (1985) p. 2422.CrossRefGoogle Scholar
28.Budai, J.D. and Aziz, M.J., Phys. Rev. B33 (1986) p. 2876.CrossRefGoogle Scholar
29.Follstaedt, D.M. and Knapp, J.A., Phys. Rev. Lett. 56 (1986) p. 1827.CrossRefGoogle Scholar
30.Lilienfeld, D.A., Nastasi, M., Johnson, H.H., Ast, D.G., and Mayer, J.W., in Beam-Solid Interactions and Phase Transformations, edited by Kurz, H.et al. (Mater. Res. Soc. Proc. 51, Pittsburgh, PA, 1986) p. 427.Google Scholar
31.Follstaedt, D.M. and Knapp, J.A., Proc. of IBMM'86, Cantania, July, 1986 to be published in Nucl. Instrum. Methods B (1987).Google Scholar
32.Lilienfeld, D.A., unpublished data.Google Scholar
33.Guyot, P. and Audier, M., Philos. Mag. B52 (1985) p. L15.CrossRefGoogle Scholar
34.Henley, C.L., J. Non-Cryst. Solids 75 (1985) p. 91.CrossRefGoogle Scholar
35.Kuo, K.H., J. de Phys. 47 (1985) p. C3425.Google Scholar
36.Bancel, P.A. and Heiney, P.A., Phys. Rev. B33 (1986) p. 7917.CrossRefGoogle Scholar
37.Sastry, G.V., Rao, V.V., Ramachandradoa, P., and Anantharaman, T.R., Scripta Met. 20 (1986) p. 191.CrossRefGoogle Scholar
38.Villars, P. and Calvert, L.D., Pearson's Handbook of Crystallographic Data for lnterme-tallic Phases (American Society for Metals, 1985).Google Scholar
39.Liu, J. and Lilienfeld, D.A., unpublished results, 1986.Google Scholar