Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-01T22:47:37.326Z Has data issue: false hasContentIssue false

Implantation and Dry Etching of Group-III-Nitride Semiconductors

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The recent advances in the material quality of the group-III-nitride semiconductors (GaN, A1N, and InN) have led to the demonstration of high-brightness light-emitting diodes, blue laser diodes, and high-frequency transistors, much of which is documented in this issue of MRS Bulletin. While further improvements in the material properties can be expected to enhance device operation, further device advances will also require improved processing technology. In this article, we review developments in two critical processing technologies for photonic and electronic devices: ion implantation and plasma etching. Ion implantation is a technology whereby impurity atoms are introduced into the semiconductor with precise control of concentration and profile. It is widely used in mature semiconductor materials systems such as silicon or gallium arsenide for selective area doping or isolation. Plasma etching is employed to define device features in the semiconductor material with controlled profiles and etch depths. Plasma etching is particularly necessary in the III-nitride materials systems due to the lack of suitable wet-etch chemistries, as will be discussed later.

Figure 1 shows a laser-diode structure (after Nakamura) where plasma etching is required to form the laser facets that ideally should be vertical with smooth surfaces. The first III-nitride-based laser diode was fabricated using reactive ion etching (RIE) to form the laser facets but suffered from rough mirror facet surfaces that contributed to scattering loss and a high lasing threshold. This is a prime example of how improved material quality alone will not yield optimum device performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Akasaki, I., Amano, H., Kito, M., and Hiramatsu, K., J. Lumin. 48/49 (1991) p. 666.CrossRefGoogle Scholar
2.Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64 (1994) p. 1687.CrossRefGoogle Scholar
3.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35 (1996) p. L74.CrossRefGoogle Scholar
4.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett. 69 (1996) p. 1477.CrossRefGoogle Scholar
5.Khan, M.A., Bhattarai, A., Kuznia, J.N., and Olson, D.T., Appl. Phys. Lett. 63 (1993) p. 1214.CrossRefGoogle Scholar
6.Binari, S.C., Rowland, L.B., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D.K., Electron. Lett. 30 (1994) p. 1248.CrossRefGoogle Scholar
7.Zolper, J.C., Shul, R.J., Baca, A.G., Wilson, R.G., Pearton, S.J., and Stall, R.A., Appl. Phys. Lett. 68 (1996) p. 2273.CrossRefGoogle Scholar
8.Mohammad, S.N., Salvador, A.A., and Morkoç, H., Proc. IEEE 83 (1995) p. 1306.CrossRefGoogle Scholar
9.Pankove, J.I. and Hutchby, J.A., J. Appl. Phys. 47 (1976) p. 5387.CrossRefGoogle Scholar
10.Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28 (1989) p. L2112.CrossRefGoogle Scholar
11.Nakamura, S., Mukai, T., Senoh, M., and Iwasa, N., Jpn. J. Appl. Phys. 31 (1992) p. L139.CrossRefGoogle Scholar
12.Lee, J.W., Pearton, S.J., Zolper, J.C., and Stall, R.A., Appl. Phys. Lett. 68 (1996) p. 2102.CrossRefGoogle Scholar
13.Wilson, R.G., Vartuli, C.B., Abernathy, C.R., Pearton, S.J., and Zavada, J.M., Solid-State Electron. 38 (1995) p. 1329.CrossRefGoogle Scholar
14.Zolper, J.C., Crawford, M. Hagerott, Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Ramer, J., Hersee, S.D., Yuan, C., and Stall, R.A., in Gallium Nitride and Related Materials, edited by Dupuis, R.D., Edmond, J.A., Ponce, F.A., and Nakamura, S. (Mater. Res. Soc. Symp. Proc. 395, Pittsburgh, 1996).Google Scholar
15.Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Zolper, J.C., Yuan, C., and Stall, R.A., Appl. Phys. Lett. 67 (1995) p. 1435.CrossRefGoogle Scholar
16.Maruska, H.P. and Tietjen, J.J., Appl. Phys. Lett. 15 (1969) p. 327.CrossRefGoogle Scholar
17.Lester, L.F., Brown, J.M., Ramer, J.C., Zhang, L., Hersee, S.D., and Zolper, J.C., Appl. Phys. Lett. 69 (1996) p. 2737.CrossRefGoogle Scholar
18.Zolper, J.C., Rieger, D.J., Baca, A.G., Pearton, S.J., Lee, J.W., and Stall, R.A., Appl. Phys. Lett. 69 (1996) p. 538.CrossRefGoogle Scholar
19.Strite, S., Jpn. J. Appl. Phys. 33 (1994) p. L699.CrossRefGoogle Scholar
20.Zolper, J.C., Wilson, R.G., Pearton, S.J., and Stall, R.A., Appl. Phys. Lett. 68 (1996) p. 1945.CrossRefGoogle Scholar
21.Tan, H.H., Williams, J.S., Zou, J., Cockayne, D.J.H., Pearton, S.J., and Stall, R.A., Appl. Phys. Lett. 69 (1996) p. 2364.CrossRefGoogle Scholar
22.Zolper, J.C., Crawford, M.H., Williams, J.S., Tan, H.H., and Stall, R.A., Conf. Proc. on Ion Beam Modification of Materials (October 1–6, 1996, Albuquerque, NM, in press).Google Scholar
23.Binari, S.C., Dietrich, H.B., Kelner, G., L.B., Rowland, Doverspike, K., and Wickenden, D.K., J. Appl. Phys. 78 (1995) p. 3008.CrossRefGoogle Scholar
24.Pearton, S.J., Abernathy, C.R., Wisk, P.W., Hobson, W.S., and Ren, F., Appl. Phys. Lett. 63 (1993) p. 1143.CrossRefGoogle Scholar
25.Zolper, J.C., S.J., Pearton, Abernathy, C.R., and Vartuli, C.B., Appl. Phys. Lett. 66 (1995) p. 3042.CrossRefGoogle Scholar
26.Zolper, J.C., Crawford, M. Hagerott, Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Yuan, C., and Stall, R.A., J. Electron. Mater. 25 (1996) p. 839.CrossRefGoogle Scholar
27.Chu, T.L., J. Electrochem. Soc. 118 (1971) p. 1200.CrossRefGoogle Scholar
28.Pankove, J.I., J. Electrochem. Soc. 119 (1972) p. 1118.CrossRefGoogle Scholar
29.Sheng, T.Y., Yu, Z.Q., and Collins, G.J., Appl. Phys. Lett. 52 (1988) p. 576.CrossRefGoogle Scholar
30.Pauleau, T., J. Electrochem. Soc. 129 (1982) p. 1045.CrossRefGoogle Scholar
31.Taylor, K.M. and Lenie, C., J. Electrochem. Soc. 107 (1960) p. 308.CrossRefGoogle Scholar
32.Long, G. and Fuster, L.M., J. Am. Ceram. Soc. 42 (1959) p. 53.CrossRefGoogle Scholar
33.Barrett, N.J., Grange, J.D., Sealy, B.J., and Stephens, K.G., J. Appl. Phys. 57 (1985) p. 470.CrossRefGoogle Scholar
34.Aita, C.R. and Gawlak, C.J., J. Vac. Sci. Technol. A 1 (1983) p. 403.CrossRefGoogle Scholar
35.Kline, G.R. and Lakin, K.M., Appl. Phys. Lett. 43 (1983) p. 750.CrossRefGoogle Scholar
36.Mileham, J.R., Pearton, S.J., C.R., Abernathy, MacKenzie, J.D., R.J., Shul, and Kilcoyne, S.P., Appl. Phys. Lett. 67 (1995) p. 1119.CrossRefGoogle Scholar
37.Adesida, I., Mahajan, A., Andideh, E., Khan, M. Asif, Olson, D.T, and Kuznia, J.N., Appl. Phys. Lett. 63 (1993) p. 2777.CrossRefGoogle Scholar
38.Lin, M.E., Zan, Z.F., Ma, Z., Allen, L.H., and Morkoç, H., Appl. Phys. Lett. 64 (1994) p. 887.CrossRefGoogle Scholar
39.Ping, A.T., Adesida, I., Khan, M. Asif, and Kuznia, J.N., Electron. Lett. 30 (1994) p. 1895.CrossRefGoogle Scholar
40.Lee, H., Oberman, D.B., and Harris, J.S. Jr., Appl. Phys. Lett. 67 (1995) p. 1754.CrossRefGoogle Scholar
41.Pearton, S.J., Abernathy, C.R., Ren, F., Lothian, J.R., Wisk, P.W., Katz, A., and Constantine, C., Semicond. Sci. Technol. 8 (1993) p. 310.CrossRefGoogle Scholar
42.Pearton, S.J., Abernathy, C.R., and Ren, F., Appl. Phys. Lett. 64 (1994) p. 2294.CrossRefGoogle Scholar
43.Shul, R.J., Ashby, C.I.H., Rieger, D.J., Howard, A.J., Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Barnes, P.A., and Davis, P., in Gallium Nitride and Related Materials, edited by Dupuis, R.D., Edmond, J.A., Ponce, F.A., and Nakamura, S. (Mater. Res. Soc. Symp. Proc. 395, Pittsburgh, 1996).Google Scholar
44.Zhang, L., Ramer, J., Zheng, K., Lester, L.F., and Hersee, S.D., in Gallium Nitride and Related Materials, edited by Dupuis, R.D., Edmond, J.A., Ponce, F.A., and Nakamura, S. (Mater. Res. Soc. Symp. Proc. 395, Pittsburgh, 1996).Google Scholar
45.Shul, R.J., McClellan, G.B., Rieger, D.J., Hafich, M.J., Drummond, T.J., Pearton, S.J., Abernathy, C.R., Constantine, C., Barratt, C., Karlicek, R.F. Jr., Tran, C., and Schurman, M., SOTAPOCS XXII Proc., vols. 95–96 (1995) p. 209.Google Scholar
46.Shul, R.J., Kilcoyne, S.P., Crawford, M. Hagerott, J.E., Parmeter, Vartuli, C.B., Abernathy, C.R., and Pearton, S.J., Appl. Phys. Lett. 66 (1995) p. 1761.CrossRefGoogle Scholar
47.Shul, R.J., Howard, A.J., Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Barnes, P.A., and Bozack, M.J., J. Vac. Sci. Technol. B 13 (1995) p. 2016.CrossRefGoogle Scholar
48.Zhang, L., Ramer, J., Zheng, K., Lester, L.F., and Hersee, S.D., Appl. Phys. Lett. 68 (1996) p. 367.CrossRefGoogle Scholar
49.Pearton, S.J., Abernathy, C.R., and Vartuli, C.B., Electron. Lett. 30 (1994) p. 1985.CrossRefGoogle Scholar
50.Vartuli, C.B., Pearton, S.J., Lee, J.W., MacKenzie, J.D., Abernathy, C.R., and Shul, R.J., J. Vac. Sci. Technol. B (submitted).Google Scholar
51.Vartuli, C.B., Pearton, S.J., Lee, J.W., MacKenzie, J.D., Abernathy, C.R., and Shul, R.J., Appl. Phys. Lett. 69 (1996) p. 1426.CrossRefGoogle Scholar
52.Shul, R.J., McClellan, G.B., Casalnuovo, S.A., D.J., Rieger, Pearton, S.J., Constantine, C., Barratt, C., Karlicek, R.F. Jr., Tran, C., and Schurman, M., Appl. Phys. Lett. 69 (1996) p. 1119.CrossRefGoogle Scholar
53.Shul, R.J., McClellan, G.B., Pearton, S.J., Abernathy, C.R., Constantine, C., and Barratt, C., Electron. Lett. 32 (1996) p. 1408.CrossRefGoogle Scholar
54.McLane, G.F., Casas, L., Pearton, S.J., and Abernathy, C.R., Appl. Phys. Lett. 66 (1995) p. 3328.CrossRefGoogle Scholar
55.Adesida, I., Ping, A.T., Youtsey, C., Sow, T., Khan, M. Asif, Olson, D.T., and Kuznia, J.N., Appl. Phys. Lett. 65 (1994) p. 889.CrossRefGoogle Scholar
56.Ping, A.T., Adesida, I., and Khan, M. Asif, Appl. Phys. Lett. 67 (1995) p. 1250.CrossRefGoogle Scholar
57.Gillis, H.P., Choutov, D.A., and Marlin, K.P., J. Mater. in press.Google Scholar
58.Constantine, C., Johnson, D., Pearton, S.J., Chakrabarti, U.K., Emerson, A.B., Hobson, W.S., and Kinsella, A.P., J. Vac. Sci. Technol. B 8 (1990) p. 596.CrossRefGoogle Scholar
59.Pearton, S.J., Chakrabarti, U.K., Kinsella, A.P., Johnson, D., and Constantine, C., Appl. Phys. Lett. 56 (1990) p. 1424.CrossRefGoogle Scholar
60.Murrell, A.J., Grimwood, R.C., O'Sullivan, P., Gilbert, M., Vanner, K., Ruddell, F., Davies, I., Hilton, K., Bland, S., and Spear, D., Technical Digest (Proc. 1992 GaAs IC Symposium) p. 173.Google Scholar
61.Cheung, R., Lee, Y.H., Lee, K.Y., Smith, T.P. III, Kern, D.P., Beaumont, S.P., and Wilkinson, C.D.W., J. Vac. Sci. Technol. B 7 (1989) p. 1462.CrossRefGoogle Scholar
62.Ko, K.K. and Pang, S.W., J. Electrochem. Soc. 141 (1994) p. 250.CrossRefGoogle Scholar
63.Shul, R.J., Lovejoy, M.L., Baca, A.G., Zolper, J.C., Rieger, D.J., Hafich, M.J., and Corless, R.F., J. Vac. Sci. Technol. A 13 (1995) p. 912.CrossRefGoogle Scholar
64.Gillis, H.P., Choutov, D.A., Steiner, P.A. IV, Piper, J.D., Crouch, J.H., Dove, P.M., and Marlin, K.P., Appl. Phys. Lett. 66 (1995) p. 2745.CrossRefGoogle Scholar
65.Gillis, H.P., Choutov, D.A., Marlin, K.P., and Song, Li, Appl. Phys. Lett. 68 (1996) p. 2255.CrossRefGoogle Scholar
66.Pearton, S.J., Abernathy, C.R., and Ren, F., Appl. Phys. Lett. 64 (1994) p. 3643.CrossRefGoogle Scholar
67.Shul, R.J., Howard, A.J., Pearton, S.J., Abernathy, C.R., and Vartuli, C.B., J. Electrochem. Soc. in press.Google Scholar
68.Pearton, S.J., Lee, J.W., MacKenzie, J.D., Abernathy, C.R., and Shul, R.J., Appl. Phys. Lett. 67 (1995) p. 2329.CrossRefGoogle Scholar
69.Shul, R.J., Zolper, J.C., Crawford, M. Hagerott, Hickman, R.J., Briggs, R.D., Pearton, S.J., Lee, J.W., Karlicek, R.F. Jr., Tran, C., Schurman, M., Constantine, C., and Barratt, C., SOTAPOCS Proc. XXV (1996).Google Scholar