Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-02T19:12:38.763Z Has data issue: false hasContentIssue false

Hybrid Organic/Inorganic Magnets

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

The construction of more and more complex systems starting from elemental molecular units used as building blocks is propelling several disciplines of burgeoning interest, such as supramolecular chemistry, molecular electronics, and molecular magnetism. In the particular context of magnetic molecular materials, an attractive possibility for adding complexity to the material is to use a hybrid approach in which an organic component is combined with an inorganic one. Both purely organic and purely inorganic approaches (see the articles in this issue by Veciana and Iwamura and by Miller, respectively) have been used extensively to obtain molecule-based magnets. The combination of these two kinds of magnetic molecular components has also been successfully explored to design polymeric magnets of different dimensionalities (the metal-radical approach). In this last case, both components play a magnetic role. A step forward in achieving multifunctionality is to design hybrid molecular materials formed by two independent molecular networks, such as anion/cation salts or host/guest solids, whereby each network furnishes distinct physical properties to the solid. This novel class of materials is interesting because it can give rise to the development of materials in which two properties in the same crystal lattice coexist, or materials that exhibit improved properties over those of the individual networks, or to new, unexpected properties due to the mutual interactions between them. One can imagine, for example, the combination of an extended inorganic magnetic layer opening the pathway to cooperative magnetism, with an organic or organometallic molecule that acts as a structural component controlling the interlayer separation. If the molecule inserted between the layers has unpaired electrons, a hybrid compound is produced that combines cooperative magnetism and paramagnetism. Other suitable combinations, such as electronic conductivity and magnetism, or nonlinear optics and magnetism, can also be achieved by wisely choosing the constituent molecules. In this article, we report some relevant examples that illustrate the potential of this hybrid approach in the context of molecule-based magnetic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Caneschi, A., Gatteschi, D., and Sessoli, R., Acc. Chem. Res. 22 (1989) p. 392; H. Iwamura, K. Inoue, and N. Koga, New J. Chem. 22 (1998) p. 201.CrossRefGoogle Scholar
2.Rabu, P., Rouba, S., Laget, V., Hornick, C., and Drillon, M., J. Chem. Soc., Chem. Commun. (1996) p. 1107; V. Laget, S. Rouba, C. Hornick, and M. Drillon, J. Magn. Magn. Mater. 154 (1996) p. L7; V. Laget, C. Hornick, P. Rabu, M. Drillon, and R. Ziessel, Coord. Chem. Rev. 178–180 (1998) p. 1533.CrossRefGoogle Scholar
3.Fujita, W. and Awaga, K., Inorg. Chem. 35 (1996) p. 1915; W. Fujita and K. Awaga, J. Am. Chem. Soc. 119 (1997) p. 4563.CrossRefGoogle Scholar
4.Decurtins, S., Pellaux, R., Hauser, A., and Von Arx, M.E., in Magnetism: A Supramolecular Function, NATO ASI Series C, Vol. 484, edited by Kahn, O. (Kluwer Academic Publishers, 1996) p. 487.CrossRefGoogle Scholar
5.Takada, T., Bando, Y., Kiyama, M., and Miyamoto, H., J. Phys. Soc. Jpn. 21 (1966) p. 2726.CrossRefGoogle Scholar
6.Drillon, M. and Panissod, P., J. Magn. Magn. Mater. 188 (1998) p. 93.CrossRefGoogle Scholar
7.Girtu, M.A., Wynn, C.M., Fujita, W., Awaga, K., and Epstein, A.J., Phys. Rev. B 57 (1998) p. 11058.CrossRefGoogle Scholar
8.Hornick, C., Rabu, P., and Drillon, M., Polyhedron 19 (2000) p. 259.CrossRefGoogle Scholar
9.Laget, V., Hornick, C., Rabu, P., Drillon, M., Turek, P., and Ziessel, R., Adv. Mater. 10 (1998) p. 1024.3.0.CO;2-C>CrossRefGoogle Scholar
10.Tamaki, H., Zhong, Z.J., Matsumoto, N., Kida, S., Koikawa, M., Achiwa, N., Hashimoto, Y., and Okawa, H., J. Am. Chem. Soc. 114 (1992) p. 6974.CrossRefGoogle Scholar
11.Tamaki, H., Mitsumi, M., Nakamura, K., Matsumoto, N., Kida, S., Okawa, H., and Iijima, S., Chem. Lett. (1992) p. 1975; J. Larionova, B. Bombelli, J. Sanchiz, and O. Kahn, Inorg. Chem. 37 (1998) p. 679.CrossRefGoogle Scholar
12.Mathonière, C., Nuttall, J., Carling, S.G., and Day, P., Inorg. Chem. 35 (1996) p. 1201.CrossRefGoogle Scholar
13.Clemente-León, M., Coronado, E., Galán-Mascarós, J.R., and Gómez-García, C.J., Chem. Commun. (1997) p. 1727; E. Coronado, J.R. Galán-Mascarós, C.J. Gómez-García, J. Ensling, and P. Gütlich, Chem. Eur. J. 6 (2000) p. 552.Google Scholar
14.Coronado, E., Galán-Mascarós, J.R., Gómez-García, C.J., and Martínez-Agudo, J.M., Adv. Mater. 11 (1999) p. 558.3.0.CO;2-2>CrossRefGoogle Scholar
15.Battacharjee, A. and Iijima, S., Phys. Status Solidi A 159 (1997) p. 503.3.0.CO;2-7>CrossRefGoogle Scholar
16.Day, P., in Magnetism: A Supramolecular Function, NATO ASI Series C, Vol. 484, edited by Kahn, O. (Kluwer Academic Publishers, 1996) p. 467.CrossRefGoogle Scholar
17.Kuromoto, T.Y., Kauzlarich, S.M., and Webb, D.J., Chem. Mater. 4 (1992) p. 435.CrossRefGoogle Scholar
18.Elliott, J.R., in Magnetism, Vol. IIA, edited by Rado, and Suhl, (Academic Press, New York, 1965) p. 385.Google Scholar
19.Matsubara, T. and Kotani, A., Superconductivity in Magnetic and Exotic Materials, Springer Series in Solid State Science, Vol. 52 (Springer, Berlin, 1984).CrossRefGoogle Scholar
20.Williams, J.M., Schultz, A.J., Geiser, U., Carlson, K.D., Kini, A.M., Wang, H.H., Kwok, W.K., Whangbo, M.H., and Schirber, J.E., Science 252 (1991) p. 1501.Google Scholar
21.Day, P., Kurmoo, M., Mallah, T., Marsden, I.R., Allan, M.L., Friend, R.H., Pratt, F.L., Hayes, W., Chasseau, D., Bravic, G., and Ducasse, L., J. Am. Chem. Soc. 114 (1992) p. 10722.CrossRefGoogle Scholar
22.Coronado, E., Falvello, L.R., Galán-Mascarós, J.R., Giménez-Saiz, C., Gómez-García, C.J., Lauhkin, V.N., Pérez-Benitez, A., Rovira, C., and Veciana, J., Adv. Mater. 9 (1997) p. 984.CrossRefGoogle Scholar
23.Kurmoo, M., Graham, A.W., Day, P., Coles, S.J., Hursthouse, M.B., Caulfield, J.M., Singleton, J., Ducasse, L., and Guionneau, P., J. Am. Chem. Soc. 117 (1995) p. 12209.CrossRefGoogle Scholar
24.Kobayashi, H., Tomita, H., Naito, T., Kobayashi, A., Sakai, F., Watanabe, T., and Cassoux, P., J. Am. Chem. Soc. 118 (1996) p. 368.CrossRefGoogle Scholar
25.Coronado, E. and Gómez-García, C.J., Chem. Rev. 98 (1998) p. 273.CrossRefGoogle Scholar
26.Coronado, E., Galán-Mascarós, J.R., and Gómez-García, C.J., Synth. Met. 102 (1999) p. 1459.CrossRefGoogle Scholar
27.Coronado, E., Galán-Mascarós, J.R., Gómez-García, C.J., and Lauhkin, V., Nature in press.Google Scholar
28.Seip, C.T., Granroth, G.E., Meisel, M.W., and Talham, D.R., J. Am. Chem. Soc. 119 (1997) p. 7084.CrossRefGoogle Scholar
29.Coronado, E. and Mingotaud, C., Adv. Mater. 11 (1999) p. 872.Google Scholar
30.Clemente-León, M., Soyer, H., Coronado, E., Mingotaud, C., Gómez-García, C.J., and Delhaes, P., Angew. Chem., Int. Ed. Engl. 37 (1998) p. 2842.3.0.CO;2-B>CrossRefGoogle Scholar