Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-11T08:49:16.302Z Has data issue: false hasContentIssue false

High-dimensional and high-resolution x-ray tomography for energy materials science

Published online by Cambridge University Press:  09 April 2020

Zhenjiang Yu
Affiliation:
Department of Electrochemistry, Harbin Institute of Technology, China; zhenjianghit@gmail.com
Jiajun Wang
Affiliation:
Harbin Institute of Technology, China; jiajunhit@hit.edu.cn
Yijin Liu
Affiliation:
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, USA; liuyijin@slac.stanford.edu
Get access

Abstract

At the forefront of developments in synchrotron x-ray microscopy, nanoscale-resolution high-dimensional spectrotomography under controlled sample environments has been demonstrated. Such cutting-edge experimental capability has been broadly applied to scientific studies in the field of energy materials science, where the dynamically evolving structural and chemical defects play a vital role in the functionality. In this article, we review novel developments of this technique from both experimental and data/information mining perspectives. Using studies on lithium-ion battery electrode materials as examples, we highlight the rich information in the high-dimensional and high-resolution x-ray tomographic data, which can be used to interpret the complicated thermal-electro-chemo-mechanical interplay that occurs under the operating conditions and collectively determines battery performance. We also discuss the frontier challenges in this field and our perspectives of the future directions in the context of projected major developments in the landscape of large-scale x-ray facilities across the globe.

Type
Nanoscale Tomography Using X-rays and Electrons
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ginat, D.T., Gupta, R., Annu. Rev. Biomed. Eng. 16, 431 (2014).CrossRefGoogle Scholar
Geloni, G., Kocharyan, V., Saldin, E., J. Synchrotron Radiat. 22, 288 (2015).CrossRefGoogle Scholar
Mokso, R., Marone, F., Haberthür, D., Schittny, J.C., Mikuljan, G., Isenegger, A., Stampanoni, M., AIP Conf. Proc. 1365, 38 (2011).CrossRefGoogle Scholar
Ge, M., Coburn, D.S., Nazaretski, E., Xu, W., Gofron, K., Xu, H., Yin, Z., Lee, W.-K., Appl. Phys. Lett. 113, 083109 (2018).CrossRefGoogle Scholar
Guttmann, P., Bittencourt, C., Rehbein, S., Umek, P., Ke, X., Van Tendeloo, G., Ewels, C.P., Schneider, G., Nat. Photonics 6, 25 (2011).CrossRefGoogle Scholar
Kao, T.L., Shi, C.Y., Wang, J., Mao, W.L., Liu, Y., Yang, W., Microsc. Res. Tech. 76, 1112 (2013).CrossRefGoogle Scholar
Meirer, F., Cabana, J., Liu, Y., Mehta, A., Andrews, J.C., Pianetta, P., J. Synchrotron Radiat. 18, 773 (2011).CrossRefGoogle Scholar
Rau, C., Somogyi, A., Simionovici, A., Nucl. Instrum. Methods Phys. Res. B 200, 444 (2003).Google Scholar
Wölz, M., Kaganer, V.M., Brandt, O., Geelhaar, L., Riechert, H., Appl. Phys. Lett. 100, 179902 (2012).CrossRefGoogle Scholar
Abudurexiti, A., Kameda, M., Sato, E., Abderyim, P., Enomoto, T., Watanabe, M., Hitomi, K., Tanaka, E., Mori, H., Kawai, T., Takahashi, K., Sato, S., Ogawa, A., Onagawa, J., Radiol. Phys. Technol. 3, 127 (2010).CrossRefGoogle Scholar
Nelson Weker, J., Wise, A.M., Lim, K., Shyam, B., Toney, M.F., Electrochim. Acta 247, 977 (2017).CrossRefGoogle Scholar
Wang, J., Chen-Wiegart, Y.C., Wang, J., Nat. Commun. 5, 4570 (2014).CrossRefGoogle Scholar
Wang, J., Eng, C., Chen-Wiegart, Y.C., Wang, J., Nat. Commun. 6, 7496 (2015).CrossRefGoogle Scholar
Xu, Y., Hu, E., Zhang, K., Wang, X., Borzenets, V., Sun, Z., Pianetta, P., Yu, X., Liu, Y., Yang, X.-Q., Li, H., ACS Energy Lett . 2, 1240 (2017).CrossRefGoogle Scholar
Yu, Z., Wang, J., Wang, L., Xie, Y., Lou, S., Jiang, Z., Ren, Y., Lee, S., Zuo, P., Huo, H., Yin, G., Pan, Q., Wang, J., ACS Energy Lett . 4, 2007 (2019).CrossRefGoogle Scholar
Ishikawa, T., Philos. Trans. A Math. Phys. Eng. Sci. 377, 20180231 (2019).Google Scholar
Andrews, J.C., Brennan, S., Liu, Y., Pianetta, P., Almeida, E.A., van der Meulen, M.C., Wu, Z., Mester, Z., Ouerdane, L., Gelb, J., Feser, M., Rudati, J., Tkachuk, A., Yun, W., J. Phys. Condens. Matter 186, 12081 (2009).Google Scholar
Yan, H., Bouet, N., Zhou, J., Huang, X., Nazaretski, E., Xu, W., Cocco, A.P., Chiu, W.K.S., Brinkman, K.S., Chu, Y.S., Nano Futures 2, 011001 (2018).CrossRefGoogle Scholar
Shapiro, D.A., Celestre, R., Denes, P., Farmand, M., Joseph, J., Kilcoyne, A.L.D., Marchesini, S., Padmore, H., Venkatakrishnan, S.V., Warwick, T., Yu, Y.-S., J. Phys. Conf. Ser. 849, 012028 (2017).CrossRefGoogle Scholar
Yuan, Q.X., Deng, B., Guan, Y., Zhang, K., Liu, Y.J., Physics 48, 205 (2019).Google Scholar
Gursoy, D., Jacobsen, C., MRS Bull . 45 (4), 272 (2020).CrossRefGoogle Scholar
Liu, Y., Andrews, J.C., Meirer, F., Mehta, A., Gil, S.C., Sciau, P., Mester, Z., Pianetta, P., AIP Conf. Proc. 1365, 357 (2011).CrossRefGoogle Scholar
Chao, W., Kim, J., Rekawa, S., Fischer, P., Anderson, E.H., Opt. Express 17, 17669 (2009).CrossRefGoogle Scholar
Mohacsi, I., Vartiainen, I., Rösner, B., Guizar-Sicairos, M., Guzenko, V.A., McNulty, I., Winarski, R., Holt, M.V., David, C., Sci. Rep. 7 , (2017).CrossRefGoogle Scholar
Chen, J., Li, W., Liu, Y., Yue, Z., Tian, J., Liu, L., Xiong, Y., Liu, G., Wang, C., Wu, Z., Yu, H., Tian, Y., J. Phys. Conf. Ser. 186, 012005 (2009).CrossRefGoogle Scholar
Yang, Y., Heine, R., Cheng, Y., Wang, C.-C., Song, Y.-F., Baumbach, T., Appl. Phys. Lett. 105, 094101 (2014).CrossRefGoogle Scholar
Besli, M.M., Xia, S., Kuppan, S., Huang, Y., Metzger, M., Shukla, A.K., Schneider, G., Hellstrom, S., Christensen, J., Doeff, M.M., Liu, Y., Chem. Mater. 31, 491 (2018).CrossRefGoogle Scholar
Liu, Y., Meirer, F., Williams, P.A., Wang, J., Andrews, J.C., Pianetta, P., J. Synchrotron Radiat. 19, 281 (2012).CrossRefGoogle Scholar
Wang, J., Chen-Wiegart, Y.C., Wang, J., Chem. Commun. 49, 6480 (2013).CrossRefGoogle Scholar
Ohzuku, T., Ueda, A., J. Electrochem. Soc. 141, 2972 (1994).CrossRefGoogle Scholar
Duan, X., Yang, F., Antono, E., Yang, W., Pianetta, P., Ermon, S., Mehta, A., Liu, Y., Sci. Rep. 6, 34406 (2016).CrossRefGoogle Scholar
Liu, Y., Wang, J., Azuma, M., Mao, W.L., Yang, W., Appl. Phys. Lett. 104, 043108 (2014).CrossRefGoogle Scholar
Ebner, M., Marone, F., Stampanoni, M., Wood, V., Science 342, 716 (2013).CrossRefGoogle Scholar
Yermukhambetova, A., Tan, C., Daemi, S.R., Bakenov, Z., Darr, J.A., Brett, D.J., Shearing, P.R., Sci. Rep. 6, 35291 (2016).CrossRefGoogle Scholar
Wang, J., Chen-Wiegart, Y.C.K., Eng, C., Shen, Q., Wang, J., Nat. Commun. 7, 12372 (2016).CrossRefGoogle Scholar
Liu, H., Strobridge, F.C., Borkiewicz, O.J., Wiaderek, K.M., Chapman, K.W., Chupas, P.J., Grey, C.P., Science 344, 1252817 (2014).CrossRefGoogle Scholar
Ulvestad, A., Singer, A., Clark, J.N., Cho, H.M., Kim, J.W., Harder, R., Maser, J., Meng, Y.S., Shpyrko, O.G., Science 348, 1344 (2015).CrossRefGoogle Scholar
Lin, F., Nordlund, D., Li, Y., Quan, M.K., Cheng, L., Weng, T.-C., Liu, Y., Xin, H.L., Doeff, M.M., Nat. Energy 1, 15004 (2016).CrossRefGoogle Scholar
Rahman, M.M., Xu, Y., Cheng, H., Shi, Q., Kou, R., Mu, L., Liu, Q., Xia, S., Xiao, X., Sun, C.-J., Sokaras, D., Nordlund, D., Zheng, J.-C., Liu, Y., Lin, F., Energy Environ. Sci. 11, 2496 (2018).CrossRefGoogle Scholar
Sun, Y.-K., Kim, D.-H., Yoon, C.S., Myung, S.-T., Prakash, J., Amine, K., Adv. Funct. Mater. 20, 485 (2010).CrossRefGoogle Scholar
Yang, F., Liu, Y., Martha, S.K., Wu, Z., Andrews, J.C., Ice, G.E., Pianetta, P., Nanda, J., Nano Lett . 14, 4334 (2014).CrossRefGoogle Scholar
Mao, Y., Wang, X., Xia, S., Zhang, K., Wei, C., Bak, S., Shadike, Z., Liu, X., Yang, Y., Xu, R., Pianetta, P., Ermon, S., Stavitski, E., Zhao, K., Xu, Z., Lin, F., Yang, X.Q., Hu, E., Liu, Y., Adv. Funct. Mater. 29, 1900247 (2019).CrossRefGoogle Scholar
Gent, W.E., Li, Y., Ahn, S., Lim, J., Liu, Y., Wise, A.M., Gopal, C.B., Mueller, D.N., Davis, R., Weker, J.N., Park, J.H., Doo, S.K., Chueh, W.C., Adv. Mater. 28, 6631 (2016).CrossRefGoogle Scholar
Wei, C., Xia, S., Huang, H., Mao, Y., Pianetta, P., Liu, Y., Acc. Chem. Res. 51, 2484 (2018).CrossRefGoogle Scholar
Zhang, K., Ren, F., Wang, X., Hu, E., Xu, Y., Yang, X.Q., Li, H., Chen, L., Pianetta, P., Mehta, A., Yu, X., Liu, Y., Nano Lett . 17, 7782 (2017).CrossRefGoogle Scholar
Eriksson, M., van der Veen, J.F., Quitmann, C., J. Synchrotron Radiat. 21, 837 (2014).CrossRefGoogle Scholar
Miao, J., Ishikawa, T., Robinson, I.K., Murnane, M.M., Science 348, 530 (2015).CrossRefGoogle Scholar