Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T16:42:48.848Z Has data issue: false hasContentIssue false

Colloidal Quantum Dots of III-V Semiconductors

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Quantization effects in semiconductor structures were first demonstrated in the early 1970s in III-V quantum wells; these structures consisted of a thin epitaxial film of a smaller bandgap (Eg) semiconductor (e.g., GaAs, Eg = 1.42 eV) sandwiched between two epitaxial films of a larger bandgap semiconductor (e.g., Al0.3Ga0.7As, Eg = 2.0 eV). The conduction- and valence-band offsets of the two semiconductor materials produce potential barriers for electrons and holes, respectively. The smaller bandgap semiconductor constitutes the quantum-well region and the larger bandgap material the potential barrier region. If the film of the smaller bandgap material is sufficiently thin (thickness less than the de-Broglie wavelength of the charge carriers, which typically requires thicknesses less than about 300 Å for III-V semiconductors), then the charge carriers are confined in one dimension by the potential barriers, and quantization of the energy levels for both electrons and holes can occur (Figure 1).

Type
Semiconductor Quantum Dots
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Dingle, R., Wiegmann, W., and Henry, C.H., Phys. Rev. Lett. 33 (1974) p. 827.CrossRefGoogle Scholar
2.Dingle, R., Feskörperprobleme 15 (1975) p. 21.CrossRefGoogle Scholar
3.Weisbuch, C. and Vinter, B., Quantum Semiconductor Structures (Academic Press, New York, 1991).CrossRefGoogle Scholar
4.Bastard, G., Wave Mechanics Applied to Semiconductor Heterostructurcs (Halsted Press, New York, 1988).Google Scholar
5.Jaros, M., Physics and Applications of Semiconductor Microstnictures (Oxford University Press, Oxford, 1989).Google Scholar
6.Yoffe, A.D., Adv. Phys. 42 (1993) p. 173.CrossRefGoogle Scholar
7.Kash, K., J. Lumin. 46 (1990) p. 69.CrossRefGoogle Scholar
8.Beaumont, S.P. and Sotomayor-Torres, C.M., eds., Science and Engineering of One- and Zero-Dimensional Semiconductors, vol. 214 (Plenum Press, New York, 1990).CrossRefGoogle Scholar
9.Brus, L.E., Efros, A.L., and Itoh, T., eds., J. Lumin. 70 (1–6) (1996).Google Scholar
10.Kamat, P.V. and Meisel, D., eds., Semiconductor Nanocluster: Physical, Chemical, and Catalytic Aspects, vol. 103 (Elsevier, Amsterdam, 1997).Google Scholar
11.Alivisatos, A.P., Science 271 (1996) p. 933.CrossRefGoogle Scholar
12.Alivisatos, A.P., J. Phys. Chem. 100 (1996) p. 13226.CrossRefGoogle Scholar
13.Bawendi, M.G., NATO ASI Series B (1995) p. 339.CrossRefGoogle Scholar
14.Brus, L., Appl. Phys. A53 (1991) p. 465.CrossRefGoogle Scholar
15.Wang, Y., in Advances in Photochemistry, edited by Neckers, D.C., Volman, D.H., and Bünau, V. (John Wiley & Sons, New York, 1995) p. 179.Google Scholar
16.Mićić, O.I. and Nozik, A.J., J. Lumin. 70 (1996) p. 95.CrossRefGoogle Scholar
17.Mićić, O.I., Sprague, J.R., Curtis, C.J., Jones, K.M., Machol, J.L., and Nozik, A.J., J. Phys. Chem. 99 (1995) p. 7754.CrossRefGoogle Scholar
18.Banin, U., Cerullo, G., Guzelian, A.A., Bardeen, C.J., Alivisatos, A.P., and Shank, C.V., Phys. Rev. B 55 (1997) p. 7059.CrossRefGoogle Scholar
19.Guzelian, A.A., Banin, U., Kadavanich, A.V., Peng, X., and Alivisatos, A.P., Appl. Phys. lett. 69 (10) (1996) p. 1432.CrossRefGoogle Scholar
20.Guzelian, A.A., Katari, J.E.B., Kadavanich, A.V., Banin, U., Hamad, K., Juban, E., Alivisatos, A.P., Wolters, R.H., Arnold, C.C., and Heath, J.R., J. Phys. Chem. 100 (17) (1996) p. 7212.CrossRefGoogle Scholar
21.Olshavsky, M.A., Goldstein, A.N., and Alivisatos, A.P., J. Am. Chem. Soc. 112 (1990) p. 9438.CrossRefGoogle Scholar
22.Mićić, O.I., Curtis, C.J., Jones, K.M., Sprague, J.R., and Nozik, A.J., J. Phys. Chem. 98 (1994) p. 4966.CrossRefGoogle Scholar
23.Mićić, O.I., Sprague, J.R., Lu, Z., and Nozik, A.J., Appl. Phys. Lett. 68 (1996) p. 3150.CrossRefGoogle Scholar
24.Mićić, O.I., Cheong, H.M., Fu, H., Zunger, A., Sprague, J.R., Mascarenhas, A., and Nozik, A.J., J. Phys. Chem. B101 (1997) p. 4904.CrossRefGoogle Scholar
25.Peterson, M. and Nozik, A.J., in Photoelectrochemistry and Photovoltaics of Layered Semiconductor, edited by Aruchamy, A. (Kluwer, Boston, 1992) p. 297.CrossRefGoogle Scholar
26.Weller, H. and Eychmüller, A., in Semiconductor Nanoclusters, edited by Kamat, P.V. and Meisel, D., vol. 103 (Elsevier, New York, 1996) p. 5.Google Scholar
27.Overbeek, J.T.G., Adv. Colloid I. Sci. 15(1982) p. 251.CrossRefGoogle Scholar
28.Murray, C.B., PhD dissertation, Massachusetts Institute of Technology, 1995.Google Scholar
29.Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc. 115 (1993) p. 8706.CrossRefGoogle Scholar
30.Uchida, H., Curtis, C.J., Kamat, P.V., Jones, K.M., and Nozik, A.J., J. Phys. Chem. 96 (1992) p. 1156.CrossRefGoogle Scholar
31.Nozik, A.J., Uchida, H., Kamat, P.V., and Curtis, C., Israel J. Chem. 33 (1993) p. 15.CrossRefGoogle Scholar
32.Fu, H. and Zunger, A., Phys. Rev. B 56 (1997) p. 1496.CrossRefGoogle Scholar
33.Fu, H. and Zunger, A., Phys. Rev. 55 (1997) p. 1642.CrossRefGoogle Scholar
34.Resta, A., Phys. Rev. 16 (1977) p. 2717.CrossRefGoogle Scholar
35.Nirmal, M., Norris, D.J., Kuno, M., Bawendi, M.G., Efros, A.L., and Rosen, M., Phys. Rev. Lett. 75 (1995) p. 3728.CrossRefGoogle Scholar
36.Efros, A.L., Rosen, M., Kuno, M., Nirmal, M., Norris, D.J., and Bawendi, M., Phys. Rev. B 54 (1996) p. 4843.CrossRefGoogle Scholar
37.Norris, D.J. and Bawendi, M.G., Phys. Rev. B 53 (1996) p. 16338.CrossRefGoogle Scholar
38.Norris, D.J., Efros, A.L., Rosen, M., and Bawendi, M.G., Phys. Rev. B p. 16347.Google Scholar
39.Chamarro, M., Gourdon, C., Lavallard, P., Lublinskaya, O., and Ekimov, A.I., Phys. Rev. B p. 1336.Google Scholar
40.Chamarro, M., Gourdon, C., and Lavallard, P., J. Lutnin. 70 (1996) p. 222.Google Scholar
41.Woggon, U., Gindele, F., Wind, O., and Klingshirn, C., Phys. Rev. B 54 (1996) p. 1506.CrossRefGoogle Scholar
42.Murray, C.B., Kagan, C.R., and Bawendi, M.G., Science 270 (1995) p. 1335.CrossRefGoogle Scholar
43.O'Regan, B. and Gratzel, M., Nature 353 (1991) p. 737.CrossRefGoogle Scholar
44.Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Müller, E., Liska, P., Vlachopoulos, N., and Grätzel, M., J. Am. Chem. Soc. 115 (1993) p. 6382.CrossRefGoogle Scholar
45.Mićić, O.I., Zaban, A., Gregg, B.A., and Nozik, A.J. (1997).Google Scholar
46.Krishna, M.V. Rama and Friesner, R.A., J. Chem. Phys. 95 (1991) p. 525.Google Scholar
47.Pankove, J.I., Optical Processes in Semiconductors (Dover, New York, 1971).Google Scholar
48.MacDougall, J.E., Eckert, H., Stucky, G.D., Herron, N., Wang, Y., Moller, K., Bein, T., and Cox, D., J. Am. Chem. Soc. 111 (1989) p. 8006.CrossRefGoogle Scholar
49.DeLong, M.C., Ohlsen, W.D., Viohl, I., Taylor, P., and Olson, J.M., J. Appl. Phys. 70 (1991) p. 2780.CrossRefGoogle Scholar
50.Wei, S-H. and Zunger, A., Phys. B 39 (1989) p. 3279.Google Scholar
51.Wei, S-H., Ferreira, L.G., and Zunger, A., Phys. Rev. B 41 (1990) p. 8240.CrossRefGoogle Scholar
52.Froyen, S. and Zunger, A., Phys. Rev. Lett. 66 (1991) p. 3132.CrossRefGoogle Scholar
53.Mascarenhas, A. and Olson, J.M., Phys. Rev. B 41 (1990) p. 9947.CrossRefGoogle Scholar
54.Horner, G.S., Mascarenhas, A., Froyen, S., Alonso, R.G., Bertness, K.A., and Olson, J.M., Phys. Rev. B 47 (1993) p. 4041.CrossRefGoogle Scholar
55.Olson, J.M., Kurtz, S.R., Kibbler, A.E., and Faine, P., Appl. Phys. Lett. 56 (1990) p. 623.CrossRefGoogle Scholar