Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-31T19:53:41.585Z Has data issue: false hasContentIssue false

Cell sheet engineering for integrating functional tissue in vivo: Successes and challenges

Published online by Cambridge University Press:  10 May 2017

Nicholas Baksh
Affiliation:
Department of Mechanical Engineering, University of South Florida, USA; nbaksh@mail.usf.edu
Nathan D. Gallant
Affiliation:
Department of Mechanical Engineering, University of South Florida, USA; ngallant@usf.edu
Ryan G. Toomey
Affiliation:
Department of Chemical and Biomedical Engineering, University of South Florida, USA; toomey@usf.edu
Get access

Abstract

“Bottom-up” assembly of fully functional cell-based materials has enormous potential for replicating endogenous tissues. Currently, most tissue-engineering strategies are based on incorporating dissociated cells into an artificial three-dimensional matrix of supportive structural elements that direct cellular migration, proliferation, and organization. The matrix provides “top-down” guidance cues that impose assembly directions on the cells; however, the matrix also competes for space and limits fully functional, cell-dense tissues. This article focuses on bottom-up fabrication of functional tissue by cell sheet engineering. Cell sheet engineering is based on the sequential stacking and adhesion of confluent and organized cell monolayers from two-dimensional cell culture without the need for artifical scaffolds or structural intermediates. The resulting functional cellular monolayers (either individually or as stacked sheets) can then be directly implanted into living systems. Clinical successes are highlighted as well as attempts to overcome the vascularization limit often observed in engineered tissues.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chick, L.R., Ann. Plast. Surg. 21, 358 (1988).Google Scholar
Harrison, R.G., J. Exp. Zool. 9, 787 (1910).CrossRefGoogle Scholar
Pampaloni, F., Reynaud, E.G., Stelzer, E.H.K., Nat. Rev. Mol. Cell Biol. 8, 839 (2007).CrossRefGoogle Scholar
Elsdale, T., Bard, J., J. Cell Biol. 54, 626 (1972).Google Scholar
Delcommenne, M., Streuli, C.H., J. Biol. Chem. 270, 26794 (1995).CrossRefGoogle Scholar
Knowlton, S., Cho, Y.K., Li, X.J., Khademhosseini, A., Tasoglu, S., Biomater. Sci. UK 4, 768 (2016).Google Scholar
Heydrick, S., Roberts, E., Kim, J., Emani, S., Wong, J.Y., Curr. Opin. Biotechnol. 40, 119 (2016).Google Scholar
Wei, B., Dai, M.J., Yin, P., Nature 485, 623 (2012).CrossRefGoogle Scholar
Carmeliet, P., Jain, R.K., Nat. Rev. Drug Discov. 10, 417 (2011).Google Scholar
Okano, T., Yamada, N., Sakai, H., Sakurai, Y., J. Biomed. Mater. Res. 27, 1243 (1993).Google Scholar
Huang, H.L., Hsing, H.W., Lai, T.C., Chen, Y.W., Lee, T.R., Chan, H.T., Lyu, P.C., Wu, C.L., Lu, Y.C., Lin, S.T., Lin, C.W., Lai, C.H., Chang, H.T., Chou, H.C., Chan, H.L., J. Biomed. Sci. 17, 11 (2010).CrossRefGoogle Scholar
Sumide, T., Nishida, K., Yamato, M., Ide, T., Hayashida, Y., Watanabe, K., Yang, J., Kohno, C., Kikuchi, A., Maeda, N., Watanabe, H., Okano, T., Tano, Y., FASEB J. 20, 392 (2006).Google Scholar
Yamato, M., Okuhara, M., Karikusa, F., Kikuchi, A., Sakurai, Y., Okano, T., J. Biomed. Mater. Res. 44, 44 (1999).Google Scholar
Ingber, D.E., Dike, L., Hansen, L., Karp, S., Liley, H., Maniotis, A., McNamee, H., Mooney, D., Plopper, G., Sims, J., Wang, N., Int. Rev. Cytol. 150, 173 (1994).Google Scholar
Hirose, M., Kwon, O.H., Yamato, M., Kikuchi, A., Okano, T., Biomacromolecules 1, 377 (2000).CrossRefGoogle Scholar
Ito, A., Hayashida, M., Honda, H., Hata, K.I., Kagami, H., Ueda, M., Kobayashi, T., Tissue Eng. 10, 873 (2004).Google Scholar
Yeo, W.S., Mrksich, M., Langmuir 22, 10816 (2006).CrossRefGoogle Scholar
Hong, Y., Yu, M.F., Weng, W.J., Cheng, K., Wang, H.M., Lin, J., Biomaterials 34, 11 (2013).Google Scholar
Akintewe, O.O., DuPont, S.J., Elineni, K.K., Cross, M.C., Toomey, R.G., Gallant, N.D., Acta Biomater. 11, 96 (2015).Google Scholar
Yamato, M., Konno, C., Kushida, A., Hirose, M., Utsumi, M., Kikuchi, A., Okano, T., Biomaterials 21, 981 (2000).Google Scholar
Iwata, T., Washio, K., Yoshida, T., Ishikawa, I., Ando, T., Yamato, M., Okano, T., J. Tissue Eng. Regen. Med. 9, 343 (2015).Google Scholar
Nishida, K., Yamato, M., Hayashida, Y., Watanabe, K., Yamamoto, K., Adachi, E., Nagai, S., Kikuchi, A., Maeda, N., Watanabe, H., Okano, T., Tano, Y., N. Engl. J. Med. 351, 1187 (2004).CrossRefGoogle Scholar
Burillon, C., Huot, L., Justin, V., Nataf, S., Chapuis, F., Decullier, E., Damour, O., Invest. Ophthalmol. Vis. Sci. 53, 1325 (2012).Google Scholar
Sawa, Y., Miyagawa, S., Sakaguchi, T., Fujita, T., Matsuyama, A., Saito, A., Shimizu, T., Okano, T., Surg. Today 42, 181 (2012).Google Scholar
Ohki, T., Yamato, M., Murakami, D., Takagi, R., Yang, J., Namiki, H., Okano, T., Takasaki, K., Gut 55, 1704 (2006).Google Scholar
Wakitani, S., Imoto, K., Yamamoto, T., Saito, M., Murata, N., Yoneda, M., Osteoarthr. Cartil. 10, 199 (2002).Google Scholar
Kaneshiro, N., Sato, M., Ishihara, M., Mitani, G., Sakai, H., Mochida, J., Biochem. Biophys. Res. Commun. 349, 723 (2006).Google Scholar
Shimizu, T., Sekine, H., Isoi, Y., Yamato, M., Kikuchi, A., Okano, T., Tissue Eng. 12, 499 (2006).Google Scholar
Ohashi, K., Yokoyama, T., Yamato, M., Kuge, H., Kanehiro, H., Tsutsumi, M., Amanuma, T., Iwata, H., Yang, J., Okano, T., Nakajima, Y., Nat. Med. 13, 880 (2007).Google Scholar
Sasagawa, T., Shimizu, T., Sekiya, S., Haraguchi, Y., Yamato, M., Sawa, Y., Okano, T., Biomaterials 31, 1646 (2010).Google Scholar
Shimizu, T., Sekine, H., Yang, J., Isoi, Y., Yamato, M., Kikuchi, A., Kobayashi, E., Okano, T., FASEB J. 20, 708 (2006).CrossRefGoogle Scholar
Sakaguchi, K., Shimizu, T., Horaguchi, S., Sekine, H., Yamato, M., Umezu, M., Okano, T., Sci. Rep. UK 3, 1316 (2013).Google Scholar