Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-01T20:33:12.063Z Has data issue: false hasContentIssue false

Hybrid electrostatic waves in linearized gravity

Published online by Cambridge University Press:  29 April 2024

Chinmoy Bhattacharjee*
Affiliation:
Department of Physics, New York Institute of Technology, Old Westbury, NY 11568, USA
David J. Stark
Affiliation:
Plasma Theory and Applications, Los Alamos National Laboratory, Los Alamos, NM 87545, USA Department of Physics, College of William & Mary, Williamsburg, VA 23185, USA
*
Email address for correspondence: usa.chinmoy@gmail.com

Abstract

Linearized gravity around a rotating black hole or compact object introduces the concept of a gravitomagnetic field, which originates from the matter–current in the rotating object. Plasma in proximity to this object is subsequently subjected to motion guided by this gravitomagnetic term (where mass serves as the effective charge) in addition to the conventional magnetic field. Such an interplay of fields complicates the accessible plasma waves of the system and thus merits exploration to delineate this interplay, to identify any observable signatures of the gravitomagnetic field in weakly magnetized systems, and to motivate future numerical work in a fully relativistic setting where the effects may be stronger. In this work we analyse the dispersion of the upper and lower hybrid electrostatic waves in a plasma immersed in both magnetic and gravitomagnetic fields. In particular, we discuss the effective augmentation or cancellation of the two fields under the right conditions for the upper hybrid wave. In contrast, the lower hybrid wave experiences a frequency up-shift from the gravitomagnetic field regardless of whether it is parallel or antiparallel to the magnetic field for the studied field strengths.

Type
Letter
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araya, I.J., Rubio, M.E., San Martin, M., Stasyszyn, F.A., Padilla, N.D., Magana, J. & Sureda, J. 2021 Magnetic field generation from pbh distributions. Mon. Not. R. Astron. Soc. 503 (3), 43874399.CrossRefGoogle Scholar
Bardeen, J.M. & Petterson, J.A. 1975 The lense-thirring effect and accretion disks around Kerr black holes. Astrophys. J. 195, L65.CrossRefGoogle Scholar
Bell, T.F. & Ngo, H.D. 1990 Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities. J. Geophys. Res. 95 (A1), 149172.CrossRefGoogle Scholar
Bhattacharjee, C., Das, R. & Mahajan, S.M. 2015 Novel mechanism for vorticity generation in black-hole accretion disks. Phys. Rev. D 91 (12), 123005.CrossRefGoogle Scholar
Bhattacharjee, C., Feng, J.C. & Stark, D.J. 2018 Surveying the implications of generalized vortical dynamics in curved space–time. Mon. Not. R. Astron. Soc. 481 (1), 206216.CrossRefGoogle Scholar
Bhattacharjee, C. & Stark, D.J. 2021 Gravitomagnetic vorticity generation in black hole accretion discs: a potential spatial constraint on plasma flow stability. Mon. Not. R. Astron. Soc. 508 (1), 414420.CrossRefGoogle Scholar
Braginsky, V.B., Caves, C.M. & Thorne, K.S. 1977 Laboratory experiments to test relativistic gravity. Phys. Rev. D 15 (8), 2047.CrossRefGoogle Scholar
Cairns, I.H. & McMillan, B.F. 2005 Electron acceleration by lower hybrid waves in magnetic reconnection regions. Phys. Plasmas 12 (10). doi: 10.1063/1.2080567CrossRefGoogle Scholar
Chakrabarti, S.K. & Khanna, R. 1992 A Newtonian description of the geometry around a rotating black hole. Mon. Not. R. Astron. Soc. 256 (2), 300306.CrossRefGoogle Scholar
Chen, F.F. 2012 Introduction to Plasma Physics. Springer Science & Business Media.Google Scholar
Chen, L.-J., et al. 2020 Lower-hybrid drift waves driving electron nongyrotropic heating and vortical flows in a magnetic reconnection layer. Phys. Rev. Lett. 125 (2), 025103.CrossRefGoogle Scholar
Everitt, C.W.F., et al. 2011 Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106 (22), 221101.CrossRefGoogle ScholarPubMed
Fragile, P.C. & Anninos, P. 2005 Hydrodynamic simulations of tilted thick-disk accretion onto a Kerr black hole. Astrophys. J. 623 (1), 347.CrossRefGoogle Scholar
Ghosh, S. & Mukhopadhyay, B. 2021 Origin of hydrodynamic instability from noise: from laboratory flow to accretion disk. Phys. Rev. Fluids 6 (1), 013903.CrossRefGoogle Scholar
Hobson, M.P., Efstathiou, G.P. & Lasenby, A.N. 2006 General Relativity: An Introduction for Physicists. Cambridge University Press.CrossRefGoogle Scholar
Krishnan, V.V., et al. 2020 Lense–thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system. Science 367 (6477), 577580.CrossRefGoogle Scholar
Kumar, S. & Pringle, J.E. 1985 Twisted accretion discs: the Bardeen–Petterson effect. Mon. Not. R. Astron. Soc. 213 (3), 435442.CrossRefGoogle Scholar
Lei, W.-H., Zhang, B. & Gao, H. 2012 Frame dragging, disk warping, jet precessing, and dipped X-ray light curve of Sw J$1644+57$. Astrophys. J. 762 (2), 98.CrossRefGoogle Scholar
Lesch, H 1991 Electron heating in accretion disks of active galactic nuclei-on the formation of ion-supported tori. Astron. Astrophys. 245, 4856.Google Scholar
Liang, Y., et al. 2013 Magnetic topology changes induced by lower hybrid waves and their profound effect on edge-localized modes in the east tokamak. Phys. Rev. Lett. 110 (23), 235002.CrossRefGoogle ScholarPubMed
Liu, X., Chen, L. & Ma, Q. 2021 A statistical study of lower hybrid waves in the Earth's magnetosphere by Van Allen probes. Geophys. Res. Lett. 48 (10), e2021GL093168.CrossRefGoogle Scholar
Mahajan, S.M. & Yoshida, Z. 2011 Relativistic generation of vortex and magnetic field. Phys. Plasmas 18 (5). doi: 10.1063/1.3566081CrossRefGoogle Scholar
Miller-Jones, J.C.A., et al. 2019 A rapidly changing jet orientation in the stellar-mass black-hole system V404 Cygni. Nature 569 (7756), 374377.CrossRefGoogle ScholarPubMed
Misner, C.W., Thorne, K.S. & Wheeler, A.J. 1973 Gravitation. W.H. Freeman and Company.Google Scholar
Nealon, R., Price, D.J. & Nixon, C.J. 2015 On the Bardeen–Petterson effect in black hole accretion discs. Mon. Not. R. Astron. Soc. 448 (2), 15261540.CrossRefGoogle Scholar
Nelson, R.P. & Papaloizou, J.C.B. 2000 Hydrodynamic simulations of the Bardeen–Petterson effect. Mon. Not. R. Astron. Soc. 315 (3), 570586.CrossRefGoogle Scholar
Paoletti, M.S., van Gils, D.P.M., Dubrulle, B., Sun, C., Lohse, D. & Lathrop, D.P. 2012 Angular momentum transport and turbulence in laboratory models of Keplerian flows. Astron. Astrophys. 547, A64.CrossRefGoogle Scholar
Papanikolaou, T. & Gourgouliatos, K.N. 2023 Primordial magnetic field generation via primordial black hole disks. Phys. Rev. D 107 (10), 103532.CrossRefGoogle Scholar
Pécseli, H.L., Iranpour, K., Holter, Ø., Lybekk, B., Holtet, J., Trulsen, J., Eriksson, A. & Holback, B. 1996 Lower hybrid wave cavities detected by the FREJA satellite. J. Geophys. Res. 101 (A3), 52995316.CrossRefGoogle Scholar
Riffert, H. 1980 Pulsating X-ray sources: the oblique dipole configuration. Astrophys. Space Sci. 71, 195201.CrossRefGoogle Scholar
Roy, M. & Lakhina, G.S. 1985 Lower hybrid wave model for aurora. Astrophys. Space Sci. 117 (1), 111120.CrossRefGoogle Scholar
Safarzadeh, M. 2018 Primordial black holes as seeds of magnetic fields in the universe. Mon. Not. R. Astron. Soc. 479 (1), 315318.CrossRefGoogle Scholar
Thorne, K.S. & Macdonald, D. 1982 Electrodynamics in curved spacetime: $3+1$ formulation. Mon. Not. R. Astron. Soc. 198 (2), 339343.CrossRefGoogle Scholar
Thorne, K.S., Price, R.H. & MacDonald, D.A. 1986 Black Holes: The Membrane Paradigm. Yale University Press.Google Scholar
Verdon, A.L., Cairns, I.H., Melrose, D.B. & Robinson, P.A. 2008 Properties of lower hybrid waves. Proc. Intl Astronom. Union 4 (S257), 569573.CrossRefGoogle Scholar
Wallace, G.M., et al. 2010 Absorption of lower hybrid waves in the scrape off layer of a diverted tokamak. Phys. Plasmas 17 (8). doi: 10.1063/1.3465662CrossRefGoogle Scholar