Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-01T12:34:35.425Z Has data issue: false hasContentIssue false

Deciphering the physical basis of the intermediate-scale instability

Published online by Cambridge University Press:  12 December 2023

Mohamad Shalaby*
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany
Timon Thomas
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany
Christoph Pfrommer
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany
Rouven Lemmerz
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany
Virginia Bresci
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany
*
Email address for correspondence: mshalaby@live.ca

Abstract

We study the underlying physics of cosmic ray (CR)-driven instabilities that play a crucial role for CR transport across a wide range of scales, from interstellar to galaxy cluster environments. By examining the linear dispersion relation of CR-driven instabilities in a magnetised electron–ion background plasma, we establish that both the intermediate and gyroscale instabilities have a resonant origin, and show that these resonances can be understood via a simple graphical interpretation. These instabilities destabilise wave modes parallel to the large-scale background magnetic field at significantly distinct scales and with very different phase speeds. Furthermore, we show that approximating the electron–ion background plasma with either magnetohydrodynamics (MHD) or Hall-MHD fails to capture the fastest-growing instability in the linear regime, namely the intermediate-scale instability. This finding highlights the importance of accurately characterising the background plasma for resolving the most unstable wave modes. Finally, we discuss the implications of the different phase speeds of unstable modes on particle–wave scattering. Further work is needed to investigate the relative importance of these two instabilities in the nonlinear, saturated regime and to develop a physical understanding of the effective CR transport coefficients in large-scale CR hydrodynamics theories.

Type
Letter
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amato, E. & Blasi, P. 2009 A kinetic approach to cosmic-ray-induced streaming instability at supernova shocks. Mon. Not. R. Astron. Soc. 392 (4), 15911600.CrossRefGoogle Scholar
Bai, X.-N. 2021 Towards first-principle characterization of cosmic-ray transport coefficients from multi-scale kinetic simulations. arXiv:2112.14782 [astro-ph].CrossRefGoogle Scholar
Bai, X.-N., Ostriker, E.C., Plotnikov, I. & Stone, J.M. 2019 Magnetohydrodynamic particle-in-cell simulations of the cosmic-ray streaming instability: linear growth and quasi-linear evolution. Astrophys. J. 876 (1), 60.CrossRefGoogle Scholar
Bambic, C.J., Bai, X.-N. & Ostriker, E.C. 2021 MHD-PIC simulations of cosmic-ray scattering and transport in inhomogeneously ionized plasma. Astrophys. J. 920, 141.CrossRefGoogle Scholar
Bell, A.R. 2004 Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353 (2), 550558.CrossRefGoogle Scholar
Blasi, P., Amato, E. & Serpico, P.D. 2012 Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy. Phys. Rev. Lett. 109 (6), 061101.CrossRefGoogle ScholarPubMed
Boulares, A. & Cox, D.P. 1990 Galactic hydrostatic equilibrium with magnetic tension and cosmic-ray diffusion. Astrophys. J. 365, 544.CrossRefGoogle Scholar
Boyd, T.J.M. & Sanderson, J.J. 2003 The Physics of Plasmas, Vol. 544. Cambridge University Press.CrossRefGoogle Scholar
Breitschwerdt, D., McKenzie, J.F. & Voelk, H.J. 1991 Galactic winds. I. Cosmic ray and wave-driven winds from the galaxy. Astron. Astrophys. 245, 79.Google Scholar
Breǐzman, B.N., Ryutov, D.D. & Chebotaev, P.Z. 1972 Nonlinear effects in the interaction between an ultrarelativistic electron beam and a plasma. Sov. J. Exp. Theor. Phys. 35, 741.Google Scholar
Bret, A., Gremillet, L. & Bénisti, D. 2010 a Exact relativistic kinetic theory of the full unstable spectrum of an electron-beam-plasma system with Maxwell-Jüttner distribution functions. Phys. Rev. E 81 (3), 036402.CrossRefGoogle ScholarPubMed
Bret, A., Gremillet, L. & Dieckmann, M.E. 2010 b Multidimensional electron beam-plasma instabilities in the relativistic regime. Phys. Plasmas 17 (12), 120501.CrossRefGoogle Scholar
Buck, T., Pfrommer, C., Pakmor, R., Grand, R.J.J. & Springel, V. 2020 The effects of cosmic rays on the formation of Milky Way-mass galaxies in a cosmological context. Mon. Not. R. Astron. Soc. 497 (2), 17121737.CrossRefGoogle Scholar
Chang, P., Broderick, A.E., Pfrommer, C., Puchwein, E., Lamberts, A. & Shalaby, M. 2014 The effect of nonlinear landau damping on ultrarelativistic beam plasma instabilities. Astrophys. J. 797, 110.CrossRefGoogle Scholar
Chang, P., Broderick, A.E., Pfrommer, C., Puchwein, E., Lamberts, A., Shalaby, M. & Vasil, G. 2016 The linear instability of dilute ultrarelativistic e$^{\pm }$ pair beams. Astrophys. J. 833, 118.CrossRefGoogle Scholar
Evoli, C., Blasi, P., Morlino, G. & Aloisio, R. 2018 Origin of the cosmic ray galactic halo driven by advected turbulence and self-generated waves. Phys. Rev. Lett. 121 (2), 021102.CrossRefGoogle ScholarPubMed
Farber, R., Ruszkowski, M., Yang, H.Y.K. & Zweibel, E.G. 2018 Impact of cosmic-ray transport on galactic winds. Astrophys. J. 856 (2), 112.CrossRefGoogle Scholar
Foote, E.A. & Kulsrud, R.M. 1979 Hydromagnetic waves in high beta plasmas. Astrophys. J. 233, 302316.CrossRefGoogle Scholar
Girichidis, P., Naab, T., Hanasz, M. & Walch, S. 2018 Cooler and smoother - the impact of cosmic rays on the phase structure of galactic outflows. Mon. Not. R. Astron. Soc. 479 (3), 30423067.CrossRefGoogle Scholar
Girichidis, P., Naab, T., Walch, S., Hanasz, M., Mac Low, M.-M., Ostriker, J.P., Gatto, A., Peters, T., Wünsch, R., Glover, S.C.O., Klessen, R.S., Clark, P.C. & Baczynski, C. 2016 Launching cosmic-ray-driven outflows from the magnetized interstellar medium. Astrophys. J. Lett. 816 (2), L19.CrossRefGoogle Scholar
Goedbloed, J.P., Keppens, R. & Poedts, S. 2010 Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press.CrossRefGoogle Scholar
Holcomb, C. & Spitkovsky, A. 2019 On the growth and saturation of the gyroresonant streaming instabilities. Astrophys. J. 882 (1), 3.CrossRefGoogle Scholar
Hopkins, P.F., Chan, T.K., Garrison-Kimmel, S., Ji, S., Su, K.-Y., Hummels, C.B., Kereš, D., Quataert, E. & Faucher-Giguère, C.-A. 2020 But what about…: cosmic rays, magnetic fields, conduction, and viscosity in galaxy formation. Mon. Not. R. Astron. Soc. 492 (3), 34653498.CrossRefGoogle Scholar
Ipavich, F.M. 1975 Galactic winds driven by cosmic rays. Astrophys. J. 196, 107120.CrossRefGoogle Scholar
Ji, S., Chan, T.K., Hummels, C.B., Hopkins, P.F., Stern, J., Kereš, D., Quataert, E., Faucher-Giguère, C.-A. & Murray, N. 2020 Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes. Mon. Not. R. Astron. Soc. 496 (4), 42214238.CrossRefGoogle Scholar
Krafft, C., Volokitin, A.S. & Krasnoselskikh, V.V. 2013 Interaction of energetic particles with waves in strongly inhomogeneous solar wind plasmas. Astrophys. J. 778, 111.CrossRefGoogle Scholar
Kulsrud, R. & Pearce, W.P. 1969 The effect of wave-particle interactions on the propagation of cosmic rays. Astrophys. J. 156, 445.CrossRefGoogle Scholar
Lebiga, O., Santos-Lima, R. & Yan, H. 2018 Kinetic-MHD simulations of gyroresonance instability driven by CR pressure anisotropy. Mon. Not. R. Astron. Soc. 476 (2), 27792791.CrossRefGoogle Scholar
Lemmerz, R., Shalaby, M., Thomas, T. & Pfrommer, C. 2023 Coupling multi-fluid dynamics equipped with Landau closures to the particle-in-cell method. e-prints. arXiv:2301.04679.Google Scholar
Pakmor, R., Pfrommer, C., Simpson, C.M. & Springel, V. 2016 Galactic winds driven by isotropic and anisotropic cosmic-ray diffusion in disk galaxies. Astrophys. J. Lett. 824 (2), L30.CrossRefGoogle Scholar
Phan, V.H.M., Morlino, G. & Gabici, S. 2018 What causes the ionization rates observed in diffuse molecular clouds? The role of cosmic ray protons and electrons. Mon. Not. R. Astron. Soc. 480 (4), 51675174.Google Scholar
Plotnikov, I., Ostriker, E.C. & Bai, X.-N. 2021 Influence of ion-neutral damping on the cosmic-ray streaming instability: magnetohydrodynamic particle-in-cell simulations. Astrophys. J. 914, 3.CrossRefGoogle Scholar
Quataert, E., Jiang, Y.-F. & Thompson, T.A. 2022 The physics of galactic winds driven by cosmic rays - II. Isothermal streaming solutions. Mon. Not. R. Astron. Soc. 510 (1), 920945.CrossRefGoogle Scholar
Recchia, S., Blasi, P. & Morlino, G. 2016 Cosmic ray driven Galactic winds. Mon. Not. R. Astron. Soc. 462 (4), 42274239.CrossRefGoogle Scholar
Reville, B., Kirk, J.G., Duffy, P. & O'Sullivan, S. 2008 Environmental limits on the nonresonant cosmic-ray current-driven instability. Intl J. Mod. Phys. D 17 (10), 17951801.CrossRefGoogle Scholar
Ruszkowski, M., Yang, H.Y.K. & Zweibel, E. 2017 Global simulations of galactic winds including cosmic-ray streaming. Astrophys. J. 834 (2), 208.CrossRefGoogle Scholar
Salem, M. & Bryan, G.L. 2014 Cosmic ray driven outflows in global galaxy disc models. Mon. Not. R. Astron. Soc. 437 (4), 33123330.CrossRefGoogle Scholar
Salem, M., Bryan, G.L. & Hummels, C. 2014 Cosmological simulations of galaxy formation with cosmic rays. Astrophys. J. Lett. 797 (2), L18.CrossRefGoogle Scholar
Schlickeiser, R. 2002 Cosmic Ray Astrophysics. Springer.CrossRefGoogle Scholar
Shalaby, M. 2017 Cosmological beam plasma instabilities, Ph.D. thesis; http://hdl.handle.net/10012/12203Google Scholar
Shalaby, M., Broderick, A.E., Chang, P., Pfrommer, C., Lamberts, A. & Puchwein, E. 2017 a SHARP: a spatially higher-order, relativistic particle-in-cell code. Astrophys. J. 841 (1), 52.CrossRefGoogle Scholar
Shalaby, M., Broderick, A.E., Chang, P., Pfrommer, C., Lamberts, A. & Puchwein, E. 2017 b ZImportance of resolving the spectral support of beam-plasma instabilities in simulations. Astrophys. J. 848 (2), 81.CrossRefGoogle Scholar
Shalaby, M., Broderick, A.E., Chang, P., Pfrommer, C., Lamberts, A. & Puchwein, E. 2018 Growth of beam-plasma instabilities in the presence of background inhomogeneity. Astrophys. J. 859, 45.CrossRefGoogle Scholar
Shalaby, M., Broderick, A.E., Chang, P., Pfrommer, C., Puchwein, E. & Lamberts, A. 2020 The growth of the longitudinal beam-plasma instability in the presence of an inhomogeneous background. J. Plasma Phys. 86 (2), 535860201.CrossRefGoogle Scholar
Shalaby, M., Lemmerz, R., Thomas, T. & Pfrommer, C. 2022 The mechanism of efficient electron acceleration at parallel nonrelativistic shocks. Astrophys. J. 932 (2), 86.CrossRefGoogle Scholar
Shalaby, M., Thomas, T. & Pfrommer, C. 2021 A new cosmic-ray-driven instability. Astrophys. J. 908 (2), 206.CrossRefGoogle Scholar
Simpson, C.M., Pakmor, R., Marinacci, F., Pfrommer, C., Springel, V., Glover, S.C.O., Clark, P.C. & Smith, R.J. 2016 The role of cosmic-ray pressure in accelerating galactic outflows. Astrophys. J. Lett. 827 (2), L29.CrossRefGoogle Scholar
Simpson, C.M., Pakmor, R., Pfrommer, C., Glover, S.C.O. & Smith, R. 2023 How cosmic rays mediate the evolution of the interstellar medium. Mon. Not. R. Astron. Soc. 520 (3), 46214645.CrossRefGoogle Scholar
Thomas, T., Pfrommer, C. & Pakmor, R. 2023 Cosmic-ray-driven galactic winds: transport modes of cosmic rays and Alfvén-wave dark regions. Mon. Not. R. Astron. Soc. 521 (2), 30233042.CrossRefGoogle Scholar
Uhlig, M., Pfrommer, C., Sharma, M., Nath, B.B., Enßlin, T.A. & Springel, V. 2012 Galactic winds driven by cosmic ray streaming. Mon. Not. R. Astron. Soc. 423 (3), 23742396.CrossRefGoogle Scholar
Weidl, M.S., Winske, D. & Niemann, C. 2019 On the background-gyroresonant character of Bell's instability in the large-current regime. Astrophys. J. 872 (1), 48.CrossRefGoogle Scholar
Zweibel, E.G. 2003 Cosmic-ray history and its implications for galactic magnetic fields. Astrophys. J. 587 (2), 625637.CrossRefGoogle Scholar
Zweibel, E.G. 2017 The basis for cosmic ray feedback: written on the wind. Phys. Plasmas 24 (5), 055402.CrossRefGoogle ScholarPubMed
Zweibel, E.G. & Everett, J.E. 2010 Environments for magnetic field amplification by cosmic rays. Astrophys. J. 709 (2), 14121419.CrossRefGoogle Scholar