Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-02T16:34:36.077Z Has data issue: false hasContentIssue false

Palaeoparasitology confirms Early Lapita evidence of pig and dog at Kamgot, Bismarck Archipelago

Published online by Cambridge University Press:  18 January 2024

M. Horrocks
Affiliation:
Microfossil Research Ltd, Auckland, New Zealand School of Environment, University of Auckland, Auckland, New Zealand
G. Summerhayes
Affiliation:
Department of Anthropology, University of Otago, Dunedin, New Zealand
B. Presswell
Affiliation:
Evolutionary and Ecological Parasitology, University of Otago, Dunedin, New Zealand

Abstract

Little is known about helminth parasites of the Bismarck Archipelago, in either archaeological or modern contexts. This study presents a parasitological analysis of soil samples from Early Lapita habitation layers at Kamgot (3300–3000 BP). Evidence for the presence of pigs and dogs and the timing of their arrival in Early Lapita contexts have been contested in the literature. The finding of parasite eggs in samples from Kamgot supports the presence of pigs and dogs at the site. Six types of helminth eggs were identified: pig nematode Trichuris suis, dog nematode Toxocara canis, and cestode Dipylidium caninum, as well as two unknown trematodes and a possible anoplocephalid cestode, thereby indicating the local presence of other mammals or birds. This study represents the first confirmed record of ancient helminth parasites in tropical Oceania.

Type
Short Communication
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anastasiou, E, Mitchell, PD (2013). Simplifying the process of extracting intestinal parasite eggs from archaeological sediment samples: A comparative study of the efficacy of widely used disaggregation techniques. International Journal of Paleopathology 3, 3, 204207. https://doi.org/10.1016/j.ijpp.2013.04.004CrossRefGoogle ScholarPubMed
Anderson, A (2009). The rat and the octopus: Initial human colonization and the prehistoric introduction of domestic animals to Remote Oceania. Biological Invasions 11, 7, 15031519. https://doi.org/10.1007/s10530-008-9403-2CrossRefGoogle Scholar
Bedford, S, Spriggs, M (eds) (2019). Debating Lapita. Canberra: ANU Press.Google Scholar
Beveridge, I (1976). A taxonomic revision of the Anoplocephalidae (Cestoda: Cyclophyllidea) of Australian marsupialsAustralian Journal of Zoology Supplementary Series 24, 44, 1110.CrossRefGoogle Scholar
Beveridge, I (1994). Family Anoplocephalidae. In Khalil, LF, Jones, A, Bray, RA (eds), Keys to the Cestode Parasites of Vertebrates. Wallingford: CAB International, 315366.Google Scholar
Clarkson, C, Smith, M, Marwick, B, Fullagar, R, Wallis, LA, Faulkner, P, Manne, T, Hayes, E, Roberts, RG, Jacobs, Z, Carah, X, Lowe, KM, Matthews, J, Florin, SA (2015). The archaeology, chronology and stratigraphy of Madjedbebe (Malakunanja II): A site in northern Australia with early occupationJournal of Human Evolution 83, 4664.CrossRefGoogle Scholar
Conlan, JV, Sripa, B, Attwood, S, Newton, PN (2011). A review of parasitic zoonoses in a changing Southeast AsiaVeterinary Parasitology 182, 1, 2240. https://doi.org/10.1016/j.vetpar.2011.07.013CrossRefGoogle Scholar
David, ED, Lindquist, WD (1982). Determination of the specific gravity of certain helminth eggs using sucrose density gradient centrifugation. Journal of Parasitology 68, 5, 916919.CrossRefGoogle ScholarPubMed
Denham, T (2004). The roots of agriculture and arboriculture in New Guinea: Looking beyond Austronesian expansion, Neolithic packages and indigenous originsWorld Archaeology 36, 4610620.CrossRefGoogle Scholar
Esteban, JG, Muñoz-Antoli, C, Toledo, R, Ash, LR (2014). Diagnosis of human trematode infectionsAdvances in Experimental Medicine and Biology 766, 293327. https://doi.org/10.1007/978-1-4939-0915-5_9CrossRefGoogle ScholarPubMed
Flannery, TF (1995). Mammals of New Guinea. Chatswood: Reed Books.Google Scholar
Flannery, TF (1994). Possums of the World: A Monograph of the Phalangeroidea. Sydney: GEO Productions.Google Scholar
Flannery, TF (1992). Taxonomic revision of the Thylogale brunii complex (Macropodidae: Marsupialia) in Melanesia, with description of a new species. Australian Mammalogy 15, 1, 723.CrossRefGoogle Scholar
Greig, K, Gosling, A, Collins, CJ, Boocock, J, McDonald, K, Addison, DJ, Allen, MS, David, B, Gibbs, M, Higham, CFW, Liu, F (2018). Complex history of dog (Canis familiaris) origins and translocations in the Pacific revealed by ancient mitogenomesScientific Reports 8, 1, 9130. https://doi.org/10.1038/s41598-018-27363-8CrossRefGoogle ScholarPubMed
Harris-Linton, M (2001). Animal Diversity Web: Toxocara canis. Available at https://animaldiversity.org/accounts/Toxocara_canis/ (accessed 7 December 2023).Google Scholar
Horrocks, M (2020). Recovering plant microfossils from archaeological and other paleoenvironmental deposits: A practical guide developed from Pacific Region experience. Asian Perspectives 59, 1, 186208.CrossRefGoogle Scholar
Horrocks, M, Brown, A, Brown, J, Presswell, B (2023a). A plant and parasite record of a midden on Auckland Isthmus, New Zealand, reveals large scale landscape disturbance, Māori introduced cultigens, and helminthiasis. Asian Perspectives 62, 1, 97119.CrossRefGoogle Scholar
Horrock, M, Dodd, A, Bickler, S, Carley, D, Presswell, B (in review). A plant microfossil and parasite record from Palliser Bay stone garden systems, New Zealand, reveals Māori translocations and helminthiasis.Google Scholar
Horrocks, M, Presswell, B (2023b). The presumed extinct cestode Stringopotaenia psittacea (Fuhrmann, 1904) (Cestoda: Anoplocephalidae) from a critically endangered New Zealand bird: New evidence from ancient coprolites. Journal of Helminthology 97, e93https://doi.org/10.1017/S0022149X23000780CrossRefGoogle Scholar
Irwin, GJ, Horrocks, M, Williams, LJ, Hall, HJ, McGlone, MS, Nichol, SL (2004). Evidence for diet, parasites, pollen, phytoliths, diatoms and starch grains in prehistoric coprolites from Kohika. In Irwin, G (ed.), The Archaeology of a Late Maori Lake Village in the Ngati Awa Rohe, Bay of Plenty, New Zealand. Auckland: Auckland University Press, 217238.Google Scholar
Kirch, PV (2000). On the Road of the Winds: An Archaeological History of the Pacific Islands before European Contact. Berkeley: University of California Press.Google Scholar
Manne, T, David, B, Petchey, F, Leavesley, MRoberts, G, Szabó, K, Urwin, CMcNiven, I, Richards, T (2020). How long have dogs been in Melanesia? New evidence from Caution Bay, south coast of Papua New Guinea. Journal of Archaeological Science: Reports 30, 10225. https://doi.org/10.1016/j.jasrep.2020.102255Google Scholar
Matisoo-Smith, E (2007). Animal translocations, genetic variation, and the human settlement of the Pacific. In Friedlaender, JS (ed.), Genes, Language, & Culture History in the Southwest Pacific. New York: Oxford University Press, 157170.Google Scholar
O’Connor, S, Barham, A, Aplin, K, Dobney, K, Fairbairn, A, Richards, M (2011). The power of paradigms: Examining the evidential basis for early to mid-Holocene pigs and pottery in MelanesiaJournal of Pacific Archaeology 2, 2, 125.Google Scholar
Piper, PJ (2017). The origins and arrival of the earliest domestic animals in Mainland and Island Southeast Asia: A developing story of complexity. In Piper, PJ, Matsumura, H, Bulbeck, D (eds), New Perspectives in Southeast Asian and Pacific prehistory 45, 251273.CrossRefGoogle Scholar
Pittman, JS, Shepherd, G, Thacker, BJ, Myers, GH (2010). Trichuris suis in finishing pigs: Case report and reviewJournal of Swine Health and Production 18, 6, 306313.Google Scholar
Sondak, VA (1948). Independence of the whipworm species Trichocephalus trichiura and the swine whipworm Trichocephalus suis. Parazitologicheskiĭ Sbornik 10, 197.Google Scholar
Specht, J, Denham, T, Goff, J, Terrell, JE (2014). Deconstructing the Lapita cultural complex in the Bismarck ArchipelagoJournal of Archaeological Research 22, 89140.CrossRefGoogle Scholar
Sapp, SGH, Bradbury, RS (2020). The forgotten exotic tapeworms: A review of uncommon zoonotic CyclophyllideaParasitology 147, 5, 533558. https://doi.org/10.1017/S003118202000013XCrossRefGoogle ScholarPubMed
Schmidt, GD (1972). Cyclophyllidean cestodes of Australian birds, with three new species. The Journal of Parasitology 58, 6, 10851094.CrossRefGoogle ScholarPubMed
Spratt, DM, Beveridge, I (2016). Helminth parasites of Australasian monotremes and marsupials. Zootaxa 4123, 1, 1198. https://doi.org/10.11646/zootaxa.4123.1.1CrossRefGoogle ScholarPubMed
Summerhayes, GR (2000). Recent archaeological investigations in the Bismarck Archipelago, Anir, New Ireland Province, Papua New Guinea. Bulletin of the Indo-Pacific Prehistory Association 19, 167174.Google Scholar
Summerhayes, GR (2010). Lapita interaction: An update. In Gadu, M, Lin, H-M (eds), 2009 International Symposium on Austronesian Studies. Taitong: National Museum of Prehistory, 140.Google Scholar
Summerhayes, GR, Leavesley, M, Fairbairn, A (2009). Impact of human colonisation on the landscape: A view from the Western Pacific. Pacific Science 63, 725745.CrossRefGoogle Scholar
Summerhayes, GR, Szabo, K, Fairbairn, A, Horrocks, M, McPherson, , Crowther, A (2019a). Early Lapita subsistence: The evidence from Kamgot, Anir Islands, New Ireland Province, Papua New Guinea. In Bedford, S, Spriggs, M (eds), Debating Lapita: Distribution, Chronology, Society and Subsistence. Canberra: ANU Press, 379402.Google Scholar
Summerhayes, GR, Szabó, K, Leavesley, M, Gaffney, D (2019b). Kamgot at the lagoon’s edge: Site position and resource use of an Early Lapita site in Near Oceania. In Bedford, S, Spriggs, M (eds), Debating Lapita: Distribution, Chronology, Society and Subsistence. Canberra: ANU Press, 89103.Google Scholar