Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-10T07:33:33.684Z Has data issue: false hasContentIssue false

Analysis of P-gp genes relative expression associated to ivermectin resistance in Haemonchus contortus larval stages from in vitro cultures (L3 and xL3) and from gerbils (Meriones unguiculatus) (L4) as models of study

Published online by Cambridge University Press:  15 February 2024

D.E. Reyes-Guerrero
Affiliation:
Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
R.I. Higuera-Piedrahita
Affiliation:
Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán-Teoloyucan Km 2.5, Col. San Sebastián Xhala. Cuautitlán, Estado de México, México
J. Maza-Lopez
Affiliation:
Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
P. Mendoza-de-Gives
Affiliation:
Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México
R. Camas-Pereyra
Affiliation:
Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México
M.E. López-Arellano*
Affiliation:
Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla 8534, C.P. 62574 Jiutepec, Mor., México
*
Corresponding author: M.E. López-Arellano; Email: lopez.mariaeugenia@inifap.gob.mx

Abstract

The aim of the study was to compare the relative gene expression of Haemonchus contortus P-glycoprotein genes (Hco-pgp) between fourth (L4), infective (L3), and transitory infective (xL3) larval stages as laboratory models to study ivermectin (IVM) resistance. The H. contortus resistant to IVM (IVMr) and susceptible to IVM (IVMs) strains were used to develop xL3 in vitro culture and to infect Meriones unguiculatus (gerbils) to collect L4 stages. Morphometric differences were evaluated from 25 individuals of H. contortus from each strain. Relative gene expression from xL3 and L4 was determined between comparison of IVMr stages and from IVMr vs IVMs stages. Seven Hco-pgp genes (1, 2, 3, 4, 9, 10, and 16) were analysed by RT-qPCR using L3 stage as control group, per strain, and GAPDH and β-tubulin as constitutive genes. Morphological changes were confirmed between xL3 and L4 developing oral shape, oesophagus, and intestinal tube. In addition, the body length and width showed statistical differences (p < 0.05). The Hco-pgp1, 2, 3, and 4 genes (p < 0.05) were upregulated from 7.1- to 463.82-fold changes between IVMr stages, and Hco-pgp9 (13.12-fold) and Hco-pgp10 (13.56-fold) genes showed differences between L4 and xL3, respectively. The comparative study between IVMr vs IVMs strains associated to xL3 and L4 displayed significant upregulation for most of the Hco-pgp genes among 4.89–188.71 fold-change. In conclusion, these results suggest the use of H. contortus xL3 and L4 as suitable laboratory models to study IVMr associated with Hco-pgp genes to contribute to the understanding of anthelmintic resistance.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ardelli, BF (2013) Transport proteins of the ABC systems superfamily and their role in drug action and resistance in nematodes. Parasitology International 62, 639646. https://doi.org/10.1016/j.parint.2013.02.008.CrossRefGoogle ScholarPubMed
Areskog, M, Engström, A, Tallkvist, J, von Samson-Himmelstjerna, G, and Höglund, J (2013) PGP expression in Cooperia oncophora before and after ivermectin selection. Parasitology Research 112, 30053012. https://doi.org/10.1007/s00436-013-3473-5.CrossRefGoogle ScholarPubMed
Besier, RB, Kahn, LP, Sargison, ND, and Van Wyk, JA (2016) The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. Advances in Parasitology 93, 95143. https://doi.org/10.1016/bs.apar.2016.02.022.CrossRefGoogle ScholarPubMed
Blitz, NM and Gibbs, HC (1971) An observation on the maturation of arrested Haemonchus contortus larvae in sheep. Canadian Journal of Comparative Medicine 178180. PMID: 4253468; PMCID: PMC1319572.Google ScholarPubMed
Campos-Ruelas, R, Herrera-Rodríguez, D, Quiroz-Romero, H, and Olazarán-Jenkins, S (1990) Resistencia de Haemonchus contortus a bencimidazoles en ovinos de México. Técnica Pecuaria en México 28, 3034.Google Scholar
Cedillo-Borda, M, López-Arellano, ME, and Reyes-Guerrero, DE (2020) In vitro assessment of ivermectin resistance and gene expression profiles of P-glycoprotein genes from Haemonchus contortus (L3). Bio-101. e3851. https://doi.org/10.21769/BioProtoc.3851.Google Scholar
Conder, GA, Johnson, SS, Hall, AD, Fleming, MW, Mills, MD, and Guimond, PM (1992) Growth and development of Haemonchus contortus in jirds, Meriones unguiculatus. Journal of Parasitology 78, 492497. PMID: 1597794.CrossRefGoogle ScholarPubMed
Contreras-Ochoa, CO, Lagunas-Martínez, A, Reyes-Guerrero, DE, Bautista-García, GA, Tello-López, AT, González-Garduño, R, and López-Arellano, ME (2019) Excreted and secreted products (72/60 kDa) from Haemonchus placei larvae induce in vitro peripheral blood mononuclear cell proliferation and activate the expression of cytokines and FCεR1A receptor. Experimental Parasitology 206, 107755. https://doi.org/10.1016/j.exppara.2019.107755.CrossRefGoogle ScholarPubMed
David, M, Lebrun, C, Duguet, T, Talmont, F, Beech, R, Orlowski, S, André, F, Prichard, RK, and Lespine, A (2018) Structural model, functional modulation by ivermectin and tissue localization of Haemonchus contortus P-glycoprotein-13. International Journal for Parasitology: Drugs and Drug Resistance 8, 145157. https://doi.org/10.1016/j.ijpddr.2018.02.001.Google ScholarPubMed
De Jesús-Gabino, A, Mendoza-de Gives, P, Salinas-Sánchez, D, López-Arellano, M, Liébano-Hernández, E, Hernández-Velázquez, V, and Valladares-Cisneros, G (2010) Anthelmintic effects of Prosopis laevigatan-hexanic extract against Haemonchus contortus in artificially infected gerbils (Meriones unguiculatus). Journal of Helminthology 84, 7175. https://doi.org/10.1017/S0022149X09990332.CrossRefGoogle ScholarPubMed
Dicker, AJ, Nisbet, AJ, and Skuce, PJ (2011) Gene expression changes in a P-glycoprotein (Tci-pgp-9) putatively associated with ivermectin resistance in Teladorsagia circumcincta. International Journal for Parasitology 41, 935942. https://doi.org/10.1016/j.ijpara.2011.03.015.CrossRefGoogle Scholar
Dilks, CM, Hahnel, SR, Sheng, Q, Long, L, McGrath, PT, and Andersen, EC (2020) Quantitative benzimidazole resistance and fitness effects of parasitic nematode beta-tubulin alleles. International Journal for Parasitology: Drugs and Drug Resistance 14, 2836. https://doi.org/10.1016/j.ijpddr.2020.08.003.Google ScholarPubMed
Doyle, SR, Tracey, A, Laing, R, Holroyd, N, Bartley, D, Bazant, W, Beasley, H, Beech, R, Britton, C, Brooks, K, Chaudhry, U, Maitland, K, Martinelli, A, Noonan, JD, Paulini, M, Quail, MA, Redman, E, Rodgers, FH, Sallé, G, Shabbir, MZ, Sankaranarayanan, G, Wit, J, Howe, KL, Sargison, N, Devaney, E, Berriman, M, Gilleard, JS, and Cotton, JA (2020) Genomic and transcriptomic variation defines the chromosome-scale assembly of Haemonchus contortus, a model gastrointestinal worm. Communications Biology 3, 656. https://doi.org/10.1038/s42003-020-01377-3.CrossRefGoogle Scholar
Dube, F, Hinas, A, Roy, S, Martin, F, Åbrink, M, Svärd, S, and Tydén, E (2022) Ivermectin-induced gene expression changes in adult Parascaris univalens and Caenorhabditis elegans: a comparative approach to study anthelminthic metabolism and resistance in vitro. Parasites & Vectors 15, 158. https://doi.org/10.1186/s13071-022-05260-4.CrossRefGoogle ScholarPubMed
Encalada-Mena, L, Tuyub-Solis, H, Ramirez-Vargas, G, Mendoza-de-Gives, P, Aguilar-Marcelino, L, López-Arellano, ME (2014) Phenotypic and genotypic characterisation of Haemonchus spp. and other gastrointestinal nematodes resistant to benzimidazole in infected calves from the tropical regions of Campeche State, Mexico. Veterinary Parasitology 205, 246254. https://doi.org/10.1016/j.vetpar.2014.06.032.CrossRefGoogle ScholarPubMed
Fávero, FC, Buzzulini, C, Cruz, BC, Felippelli, G, Maciel, WG, Salatta, B, Siniscalchi, D, Lopes, WDZ, Teixeira, WFP, Soares, VE, de Oliveira, GP, and da Costa, AJ (2016) Experimental infection of calves with Haemonchus placei or Haemonchus contortus: assessment of clinical, hematological and biochemical parameters and histopathological characteristics of abomasums. Experimental Parasitology 170, 125134. https://doi.org/10.1016/j.exppara.2016.09.017.CrossRefGoogle ScholarPubMed
Geary, TG (2016) Haemonchus contortus: Applications in Drug Discovery. Advances in Parasitology 93, 429463. https://doi.org/10.1016/bs.apar.2016.02.013.CrossRefGoogle ScholarPubMed
Gerhard, AP, Krücken, J, Neveu, C, Charvet, CL, Harmache, A, and von Samson-Himmelstjerna, G (2021) Pharyngeal pumping and tissue-specific transgenic P-Glycoprotein expression influence macrocyclic lactone susceptibility in Caenorhabditis elegans. Pharmaceuticals 14, 117. https://doi.org/10.3390/ph14020153.CrossRefGoogle ScholarPubMed
Gilleard, JS (2013) Haemonchus contortus as a paradigm and model to study anthelmintic drug resistance. Parasitology 140, 15061522. http://doi.org/10.1017/S0031182013001145.CrossRefGoogle ScholarPubMed
Ghisi, M, Kaminsky, R, and Mäser, P (2007) Phenotyping and genotyping of Haemonchus contortus isolates reveals a new putative candidate mutation for benzimidazole resistance in nematodes. Veterinary Parasitology 144, 313320. https://doi.org/10.1016/j.vetpar.2006.10.003.CrossRefGoogle ScholarPubMed
Godoy, P, Che, H, Beech, RN, and Prichard, RK (2015a) Characterization of Haemonchus contortus P-glycoprotein-16 and its interaction with the macrocyclic lactone anthelmintics. Molecular and Biochemical Parasitology 204, 1115. https://doi.org/10.1016/j.molbiopara.2015.12.001.CrossRefGoogle ScholarPubMed
Godoy, P, Lian, J, Beech, RN, and Prichard, RK (2015b) Haemonchus contortus P-glycoprotein-2: in situ localisation and characterisation of macrocyclic lactone transport. International Journal for Parasitology 45, 8593. https://doi.org/10.1016/j.ijpara.2014.09.008.CrossRefGoogle ScholarPubMed
Godoy, P, Che, H, Beech, RN, and Prichard, RK (2016) Characterisation of P-glycoprotein-9.1 in Haemonchus contortus. Parasites & Vectors 9, 52. https://doi.org/10.1186/s13071-016-1317-8.CrossRefGoogle ScholarPubMed
González-Garduño, R, Torres-Hernández, G, López-Arellano, ME, and Mendoza-de Gives, P (2012) Resistencia antihelmíntica de nematodos parásitos en ovinos. Revista de Geografía Agrícola 4849, 63–74.Google Scholar
Harris, TW, Antoshechkin, I, Bieri, T, Blasiar, D, Chan, J, Chen, WJ, De La Cruz, N, Davis, P, Duesbury, M, Fang, R, Fernandes, J, Han, M, Kishore, R, Lee, R, Müller, HM, Nakamura, C, Ozersky, P, Petcherski, A, Rangarajan, A, Rogers, A, Schindelman, G, Schwarz, EM, Tuli, MA, Van Auken, K, Wang, D, Wang, X, Williams, G, Yook, K, Durbin, R, Stein, LD, Spieth, J, and Sternberg, PW (2010) WormBase: a comprehensive resource for nematode research. Nucleic Acids Research 38, D463D467. https://doi.org/10.1093/nar/gkp952.CrossRefGoogle ScholarPubMed
Hutchinson, GW and Slocombe, JO (1976) Experimentally induced Haemonchus contortus infections in the rabbit. Journal of Helminthology 50, 143152. https://doi.org/10.1017/s0022149x00027668.CrossRefGoogle ScholarPubMed
Issouf, M, Guégnard, F, Koch, C, Le Vern, Y, Blanchard-Letort, A, Che, H, Beech, RN, Kerboeuf, D, and Neveu, C (2014) Haemonchus contortus P-glycoproteins interact with host eosinophil granules: a novel insight into the role of ABC transporters in host-parasite interaction. PloS One 9, e87802. https://doi.org/10.1371/journal.pone.0087802.CrossRefGoogle ScholarPubMed
Jakobs, N, Yilmaz, E, and Krücken, J (2022) Transgenic expression of Haemonchus contortus cytochrome P450 Hco-cyp-13A11 decreases susceptibility to particular but not all macrocyclic lactones in the model organism Caenorhabditis elegans. International Journal of Molecular Sciences 23, 9155. https://doi.org/10.3390/ijms23169155.CrossRefGoogle Scholar
Khan, S, Nisar, A, Yuan, J, Luo, X, Dou, X, Liu, F, Zhao, X, Li, J, Ahmad, H, Mehmood, SA, and Feng, X (2020) A whole genome re-sequencing based GWA analysis reveals candidate genes associated with ivermectin resistance in Haemonchus contortus. Genes (Basel) 11, 367. https://doi.org/10.3390/genes11040367.CrossRefGoogle ScholarPubMed
Kwa, MS, Veenstra, JG, and Roos, MH (1994) Benzimidazole resistance in Haemonchus contortus is correlated with a conserved mutation at amino acid 200 in beta-tubulin isotype 1. Molecular and Biochemical Parasitology 63, 299303. https://doi.org/10.1016/0166-6851(94)90066-3.CrossRefGoogle ScholarPubMed
Kohler, P (2001) The biochemical basis of anthelmintic action and resistance. International Journal for Parasitology 31, 336345. https://doi.org/10.1016/s0020-7519(01)00131-x.CrossRefGoogle ScholarPubMed
Kotze, AC, Gilleard, JS, Doyle, SR, and Prichard, RK (2020) Challenges and opportunities for the adoption of molecular diagnostics for anthelmintic resistance. International Journal for Parasitology: Drugs and Drug Resistance 14, 264273. https://doi.org/10.1016/j.ijpddr.2020.11.005.Google ScholarPubMed
Laing, R, Gillan, V, and Devaney, E (2017) Ivermectin – old drug, new tricks? Trends in Parasitology 33, 463472. https://doi.org/10.1016/j.pt.2017.02.004.CrossRefGoogle ScholarPubMed
Lamassiaude, N, Courtot, E, Corset, A, Charvet, CL, and Neveu, C (2022) Pharmacological characterization of novel heteromeric GluCl subtypes from Caenorhabditis elegans and parasitic nematodes. British Journal of Pharmacology 179, 12641279. https://doi.org/10.1111/bph.15703.CrossRefGoogle ScholarPubMed
Liébano, HE (2004) Identificación de larvas infectantes de nemátodos gastroentéricos y pulmonares en rumiantes domésticos de México. pp. 2667 in Diagnóstico y control de los nemátodos gastrointestinales de los rumiantes en México. Jiutepec, Morelos, México, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias.Google Scholar
Livak, KJ and Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402408. https://doi.org/10.1006/meth.2001.1262.CrossRefGoogle ScholarPubMed
Lu, MR, Lai, CK, Liao, BY, and Tsai, IJ (2020) Comparative transcriptomics across nematode fife cycles reveal gene expression conservation and correlated evolution in adjacent developmental stages. Genome Biology Evolution 12, 10191030. https://doi.org/10.1093/gbe/evaa110.CrossRefGoogle Scholar
Ma, G, Wang, T, Korhonen, PK, Ang, CS, Williamson, NA, Young, ND, Stroehlein, AJ, Hall, RS, Koehler, AV, Hofmann, A, and Gasser, RB (2018) Molecular alterations during larval development of Haemonchus contortus in vitro are under tight post-transcriptional control. International Journal for Parasitology 48, 763772. https://doi.org/10.1016/j.ijpara.2018.03.008.CrossRefGoogle ScholarPubMed
Martin, F, Dube, F, Karlsson Lindsjö, O, Eydal, M, Höglund, J, Bergström, TF, and Tydén, E (2020) Transcriptional responses in Parascaris univalens after in vitro exposure to ivermectin, pyrantel citrate and thiabendazole. Parasites & Vectors 13, 342. https://doi.org/10.1186/s13071-020-04212-0.CrossRefGoogle ScholarPubMed
Martin, RJ, Robertson, AP, and Choudhary, S (2021) Ivermectin: an anthelmintic, an insecticide, and much more. Trends in Parasitology 37, 4864. https://doi.org/10.1016/j.pt.2020.10.005.CrossRefGoogle ScholarPubMed
Ménez, C, Alberich, M, Courtot, E, Guegnard, F, Blanchard, A, Aguilaniu, H, and Lespine, A (2019) The transcription factor NHR-8: a new target to increase ivermectin efficacy in nematodes. PLoS Pathogens 15(2), e1007598. https://doi.org/10.1371/journal.ppat.1007598.CrossRefGoogle ScholarPubMed
Niciura, SCM, Minho, AP, McIntyre, J, Vieira, BM, Hiromi, OC, Novita, ES, de Souza Chagas, AC, and Talamini do Amarante, AF (2023) In vitro culture of parasitic stages of Haemonchus contortus. Revista Brasileira de Parasitologia Veterinária 32, e010122. https://doi.org/10.1590/S1984-29612023005.CrossRefGoogle ScholarPubMed
Miller, CM, Waghorn, TS, Leathwick, DM, Candy, PM, Oliver, AM, and Watson, TG (2012) The production cost of anthelmintic resistance in lambs. Veterinary Parasitology 186, 376381. https://doi.org/10.1016/j.vetpar.2011.11.063.CrossRefGoogle ScholarPubMed
Pfaffl, MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research 29, e45. https://doi.org/10.1093/nar/29.9.e45.CrossRefGoogle ScholarPubMed
Playford, MC, Smith, AN, Love, S, Besier, RB, Kluver, P, and Bailey, JN (2014) Prevalence and severity of anthelmintic resistance in ovine gastrointestinal nematodes in Australia (2009–2012). Australian Veterinary Journal 92, 464471. https://doi.org/10.1111/avj.12271.CrossRefGoogle ScholarPubMed
Preston, S, Jabbar, A, and Gasser, RB (2016) A perspective on genomic-guided anthelmintic discovery and repurposing using Haemonchus contortus. Infection, Genetics and Evolution Journal 40, 368373. https://doi.org/10.1016/j.meegid.2015.06.029.CrossRefGoogle ScholarPubMed
Reyes-Guerrero, DE, Cedillo-Borda, M, Alonso-Morales, RA, Alonso-Díaz, MA, Olmedo-Juárez, A, Mendoza-de-Gives, P, and López-Arellano, ME (2020) Comparative study of transcription profiles of the P-glycoprotein transporters of two Haemonchus contortus isolates: susceptible and resistant to ivermectin. Molecular and Biochemical Parasitology 238, 111281. https://doi.org/10.1016/j.molbiopara.2020.111281.CrossRefGoogle ScholarPubMed
Reyes-Guerrero, DE, Olmedo-Juárez, A, and Mendoza-de Gives, P (2021) Control and prevention of nematodiasis in small ruminants: background, challenges and outlook in Mexico. Revista Mexicana de Ciencias Pecuarias 12, 186204. https://doi.org/10.22319/rmcp.v12s3.5840.CrossRefGoogle Scholar
Reyes-Guerrero, DE, Jiménez-Jacinto, V, Alonso-Morales, RA, Alonso-Díaz, , Maza-Lopez, J, Camas-Pereyra, R, Olmedo-Juárez, A, Higuera-Piedrahita, RI, and López-Arellano, ME (2023) Assembly and analysis of Haemonchus contortus transcriptome as a tool for the knowledge of ivermectin resistance mechanisms. Pathogens 12, 499. https://doi.org/10.3390/pathogens12030499.CrossRefGoogle ScholarPubMed
Rojas-Martínez, C, Rodríguez-Vivas, RI, Figueroa-Millán, JV, Acosta-Viana, KY, Gutiérrez-Ruiz, EJ, and Álvarez-Martínez, JA (2016) In vitro culture of Babesia bovis in a free bovine serum medium supplemented with insulin, transferrin, and selenite. Experimental Parasitology 170, 214219. https://doi.org/10.1016/j.exppara.2016.10.002.CrossRefGoogle Scholar
Ruiz-Huidobro, C, Sagot, L, Lugagne, S, Huang, Y, Milhes, M, Bordes, L, Prévot, F, Grisez, C, Gautier, D, Valadier, C, Sautier, M, and Jacquiet, P (2019) Cell grazing and Haemonchus contortus control in sheep: lessons from a two-year study in temperate Western Europe. Scientific Reports 9, 12699. https://doi.org/10.1038/s41598-019-49034-y.CrossRefGoogle ScholarPubMed
Sallé, G, Doyle, SR, Cortet, J, Cabaret, J, Berriman, M, Holroyd, N, and Cotton, JA (2019) The global diversity of Haemonchus contortus is shaped by human intervention and climate. Nature Communications 10, 4811. https://doi.org/10.1038/s41467-019-12695-4.CrossRefGoogle ScholarPubMed
Silvestre, A and Cabaret, J (2002) Mutation in position 167 of isotype 1 beta-tubulin gene of Trichostrongylid nematodes: role in benzimidazole resistance? Molecular and Biochemical Parasitology 120, 297300. https://doi.org/10.1016/s0166-6851(01)00455-8.CrossRefGoogle ScholarPubMed
Suarez, VH (2002). Helminthic control on grazing ruminants and environmental risks in South America. Veterinary Research 33, 563573. https://doi.org/10.1051/vetres:2002039.CrossRefGoogle ScholarPubMed
Sutherland, IH and Campbell, WC (1990) Development, pharmacokinetics and mode of action of ivermectin. Acta Leiden 59, 161168. PMID: 2378205.Google ScholarPubMed
Turnbull, F, Jonsson, NN, Kenyon, F, Skuce, PJ, and Bisset, SA (2018) P-glycoprotein-9 and macrocyclic lactone resistance status in selected strains of the ovine gastrointestinal nematode, Teladorsagia circumcincta. International Journal for Parasitology: Drugs and Drug Resistance 8, 7080. https://doi.org/10.1016/j.ijpddr.2018.01.004.Google ScholarPubMed
Veglia, F (1915) The anatomy and fife-history of the Haemonchhus Contortus (Rud). Reports of the Director of Veterinary Research 3–4, 347–500.Google Scholar
Wagland, BM, Abeydeera, LR, Rothwell, TL, and Ouwerkerk, D (1989) Experimental Haemonchus contortus infections in guinea pigs. International Journal for Parasitology 19, 301305. https://doi:10.1016/0020-7519(89)90141-0.CrossRefGoogle ScholarPubMed
Whittaker, JH, Carlson, SA, Jones, DE, and Brewer, MT (2017) Molecular mechanisms for anthelmintic resistance in strongyle nematode parasites of veterinary importance. Journal of Veterinary Pharmacology and Therapeutics 40, 105115. https://doi.org/10.1111/jvp.12330.CrossRefGoogle ScholarPubMed
Wit, J, Dilks, CM, and Andersen, EC (2021) Complementary approaches with free-living and parasitic nematodes to understanding anthelmintic resistance. Trends in Parasitology 37, 240250. https://doi.org/10.1016/j.pt.2020.11.008.CrossRefGoogle ScholarPubMed
Williamson, SM and Wolstenholme, AJ (2012) P-glycoproteins of Haemonchus contortus: development of real-time PCR assays for gene expression studies. Journal of Helminthology 86, 202208. https://doi.org/10.1017/S0022149X11000216.CrossRefGoogle ScholarPubMed
Yang, Y, Guo, X, Zhang, H, Huang, Y, Chen, X, and Du, A (2017) Characterization of the development of Haemonchus contortus ZJ strain from gerbils. Parasites & Vectors 10, 505. https://doi.org/10.1186/s13071-017-2465-1.CrossRefGoogle ScholarPubMed
Zamilpa, A, García-Alanís, C, López-Arellano, ME, Hernández-Velázquez, VM, Valladares-Cisneros, MG, Salinas-Sánchez, DO, and Mendoza-de Gives, P (2019) In vitro nematicidal effect of Chenopodium ambrosioides and Castela tortuosa n-hexane extracts against Haemonchus contortus (Nematoda) and their anthelmintic effect in gerbils. Journal of Helminthology 93, 434439. https://doi.org/10.1017/S0022149X18000433.CrossRefGoogle ScholarPubMed