Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-02T04:20:40.349Z Has data issue: false hasContentIssue false

On Multiply Monotone Distributions, Continuous or Discrete, with Applications

Published online by Cambridge University Press:  30 January 2018

Claude Lefèvre*
Affiliation:
Université Libre de Bruxelles
Stéphane Loisel*
Affiliation:
Université de Lyon
*
Postal address: Département de Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP 210, B-1050 Bruxelles, Belgium. Email address: clefevre@ulb.ac.be
∗∗ Postal address: Université de Lyon, Université Claude Bernard Lyon 1, I.S.F.A., 50 Avenue Tony Garnier, F-69007 Lyon, France. Email address: stephane.loisel@univ-lyon1.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is concerned with the class of distributions, continuous or discrete, whose shape is monotone of finite integer order t. A characterization is presented as a mixture of a minimum of t independent uniform distributions. Then, a comparison of t-monotone distributions is made using the s-convex stochastic orders. A link is also pointed out with an alternative approach to monotonicity based on a stationary-excess operator. Finally, the monotonicity property is exploited to reinforce the classical Markov and Lyapunov inequalities. The results are illustrated by several applications to insurance.

Type
Research Article
Copyright
© Applied Probability Trust 

References

Abramowitz, M. and Stegun, I. A. (eds) (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.Google Scholar
Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities, 2nd edn. World Scientific, Hackensack, NJ.CrossRefGoogle Scholar
Balabdaoui, F. and Wellner, J. A. (2007). Estimation of a k-monotone density: limit distribution theory and the spline connection. Ann. Statist. 35, 25362564.CrossRefGoogle Scholar
Bertin, E. M. J., Cuculescu, I. and Theodorescu, R. (1997). Unimodality of Probability Measures. Kluwer, Dordrecht.CrossRefGoogle Scholar
Constantinescu, C., Hashorva, E. and Ji, L. (2011). Archimedian copulas in finite and infinite dimensions—with applications to ruin problems. Insurance Math. Econom. 49, 487495.CrossRefGoogle Scholar
Cox, D. R. (1962). Renewal Theory. John Wiley, New York.Google Scholar
De Jong, P. and Madan, D. B. (2011). Capital adequacy of financial enterprises. Working paper. Available at http://ssrn.com/abstract=1761107.Google Scholar
Denuit, M. and Lefèvre, C. (1997). Some new classes of stochastic order relations among arithmetic random variables, with applications in actuarial sciences. Insurance Math. Econom. 20, 197213.CrossRefGoogle Scholar
Denuit, M., De Vylder, E. and Lefèvre, C. (1999a). Extremal generators and extremal distributions for the continuous s-convex stochastic orderings. Insurance Math. Econom. 24, 201217.CrossRefGoogle Scholar
Denuit, M., Lefèvre, C. and Mesfioui, M. (1999b). On s-convex stochastic extrema for arithmetic risks. Insurance Math. Econom. 25, 143155.CrossRefGoogle Scholar
Denuit, M., Lefèvre, C. and Shaked, M. (1998). The s-convex orders among real random variables, with applications. Math. Inequal. Appl. 1, 585613.Google Scholar
Denuit, M., Lefèvre, C. and Shaked, M. (2000). Stochastic convexity of the Poisson mixture model. Methodology Comput. Appl. Prob. 2, 231254.CrossRefGoogle Scholar
Denuit, M., Lefèvre, C. and Utev, S. (1999c). Generalized stochastic convexity and stochastic orderings of mixtures. Prob. Eng. Inf. Sci. 13, 275291.CrossRefGoogle Scholar
Dharmadhikari, S. and Joag-Dev, K. (1988). Unimodality, Convexity, and Applications. Academic Press, Boston, MA.Google Scholar
Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edn. John Wiley, New York.Google Scholar
Furman, E. and Zitikis, R. (2009). Weighted pricing functionals with applications to insurance: an overview. N. Amer. Actuarial J. 13, 483496.CrossRefGoogle Scholar
Gerber, H. U. (1972). Ein satz von Khintchin und die varianz von unimodalen. Bull. Swiss Assoc. Actuaries, 225231.Google Scholar
Gneiting, T. (1999). Radial positive definite functions generated by Euclid's hat. J. Multivariate Anal. 69, 88119.CrossRefGoogle Scholar
Goovaerts, M. J., Kaas, R., Dhaene, J. and Tang, Q. (2003). A unified approach to generate risk measures. ASTIN Bull. 33, 173192.CrossRefGoogle Scholar
Goovaerts, M. J., Kaas, R., Van Heerwaarden, A. E. and Bauwelinckx, T. (1990). Effective Actuarial Methods. North-Holland, Amsterdam.Google Scholar
Kaas, R. and Goovaerts, M. J. (1987). Unimodal distributions in insurance. Bull. Assoc. R. Actuaires Belges 81, 6166.Google Scholar
Kaas, R., van Heerwaarden, A. E. and Goovaerts, M. J. (1994). Ordering of Actuarial Risks. CAIRE, Brussels.Google Scholar
Kaas, R., Goovaerts, M. J., Dhaene, J. and Denuit, M. (2008). Modern Actuarial Risk Theory: Using R. Springer, Heidelberg.CrossRefGoogle Scholar
Karlin, S. and Studden, W. J. (1966). Tchebycheff Systems: With Applications in Analysis and Statistics. John Wiley, New York.Google Scholar
Lefèvre, C. and Loisel, S. (2010). Stationary-excess operator and convex stochastic orders. Insurance Math. Econom. 47, 6475.CrossRefGoogle Scholar
Lefèvre, C. and Utev, S. (1996). Comparing sums of exchangeable Bernoulli random variables. J. Appl. Prob. 33, 285310.CrossRefGoogle Scholar
Lefèvre, C. and Utev, S. (2013). Convolution property and exponential bounds for symmetric monotone densities. ESAIM Prob. Statist. 17, 605613.CrossRefGoogle Scholar
Lévy, P. (1962). Extensions d'un théorème de D. Dugué et M. Girault. Z. Wahrscheinlichkeitsth. 1, 159173.CrossRefGoogle Scholar
Pakes, A. G. (1996). Length biasing and laws equivalent to the log-normal. J. Math. Anal. Appl. 197, 825854.CrossRefGoogle Scholar
Pakes, A. G. (1997). Characterization by invariance under length-biasing and random scaling. J. Statist. Planning Infer. 63, 285310.CrossRefGoogle Scholar
Pakes, A. G. (2003). Biological applications of branching processes. In Stochastic Processes: Modelling and Simulation (Handbook Statist. 21), eds Shanbhag, D. N. and Rao, C. R., North-Holland, Amsterdam, pp. 693773.CrossRefGoogle Scholar
Pakes, A. G. and Navarro, J. (2007). Distributional characterizations through scaling relations. Austral. N. Ze. J. Statist. 49, 115135.CrossRefGoogle Scholar
Patil, G. P. and Rao, C. R. (1978). Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics 34, 179189.CrossRefGoogle Scholar
Pecarić, J. E., Proschan, F. and Tong, Y. L. (1992). Convex Functions, Partial Orderings, and Statistical Applications. Academic Press, Boston, MA.Google Scholar
Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer, New York.CrossRefGoogle Scholar
Steutel, F. W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Ann. Prob. 7, 893899.CrossRefGoogle Scholar
Williamson, R. E. (1956). Multiply monotone functions and their Laplace transforms. Duke Math. J. 23, 189207.CrossRefGoogle Scholar