Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-17T08:29:08.242Z Has data issue: false hasContentIssue false

On a time-changed variant of the generalized counting process

Published online by Cambridge University Press:  27 October 2023

M. Khandakar*
Affiliation:
Indian Institute of Technology Bombay
K. K. Kataria*
Affiliation:
Indian Institute of Technology Bhilai
*
*Postal address: Department of Mathematics, Indian Institute of Technology Bombay, Mumbai 400076, India. Email address: mostafizar@math.iitb.ac.in
**Postal address: Department of Mathematics, Indian Institute of Technology Bhilai, Raipur 492015, India. Email address: kuldeepk@iitbhilai.ac.in

Abstract

In this paper, we time-change the generalized counting process (GCP) by an independent inverse mixed stable subordinator to obtain a fractional version of the GCP. We call it the mixed fractional counting process (MFCP). The system of fractional differential equations that governs its state probabilities is obtained using the Z transform method. Its one-dimensional distribution, mean, variance, covariance, probability generating function, and factorial moments are obtained. It is shown that the MFCP exhibits the long-range dependence property whereas its increment process has the short-range dependence property. As an application we consider a risk process in which the claims are modelled using the MFCP. For this risk process, we obtain an asymptotic behaviour of its finite-time ruin probability when the claim sizes are subexponentially distributed and the initial capital is arbitrarily large. Later, we discuss some distributional properties of a compound version of the GCP.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aletti, G., Leonenko, N. and Merzbach, E. (2018). Fractional Poisson fields and martingales. J. Statist. Phys. 170, 700730.CrossRefGoogle Scholar
Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities. World Scientific, Singapore.CrossRefGoogle Scholar
Beghin, L. (2012). Random-time processes governed by differential equations of fractional distributed order. Chaos Solitons Fractals 45, 13141327.CrossRefGoogle Scholar
Beghin, L. and Macci, C. (2013). Large deviations for fractional Poisson processes. Statist. Prob. Lett. 83, 11931202.CrossRefGoogle Scholar
Beghin, L. and Orsingher, E. (2009). Fractional Poisson processes and related planar random motions. Electron. J. Prob. 14, 17901827.CrossRefGoogle Scholar
Beghin, L. and Orsingher, E. (2010). Poisson-type processes governed by fractional and higher-order recursive differential equations. Electron. J. Prob. 15, 684709.CrossRefGoogle Scholar
Biard, R. and Saussereau, B. (2014). Fractional Poisson process: long-range dependence and applications in ruin theory. J. Appl. Prob. 51, 727740.CrossRefGoogle Scholar
Constantinescu, C. D., Ramirez, J. M. and Zhu, W. R. (2019). An application of fractional differential equations to risk theory. Finance Stoch. 23, 10011024.CrossRefGoogle Scholar
Debnath, L. and Bhatta, D. (2015). Integral Transforms and their Applications. CRC Press, Boca Raton.Google Scholar
Di Crescenzo, A., Martinucci, B. and Meoli, A. (2016). A fractional counting process and its connection with the Poisson process. ALEA Lat. Am. J. Prob. Math. Statist. 13, 291307.CrossRefGoogle Scholar
Ding, Z., Granger, C. W. J. and Engle, R. F. (1993). A long memory property of stock market returns and a new model. J. Empir. Finance 1, 83106.CrossRefGoogle Scholar
Doukhan, P., Oppenheim, G. and Taqqu, M. S. (Eds.). (2003). Theory and Applications of Long-Range Dependence. Birkhäuser, Boston.Google Scholar
D’Ovidio, M. and Nane, E. (2014). Time dependent random fields on spherical non-homogeneous surfaces. Stoch. Process. Appl. 124, 20982131.CrossRefGoogle Scholar
Haubold, H. J., Mathai, A. M. and Saxena, R. K. (2011). Mittag–Leffler functions and their applications. J. Appl. Math. 2011, 298628.CrossRefGoogle Scholar
Johnson, W. P. (2002). The curious history of Faà di Bruno’s formula. Amer. Math. Monthly 109, 217234.Google Scholar
Karagiannis, T., Molle, M. and Faloutsos, M. (2004). Long-range dependence ten years of internet traffic modeling. IEEE Internet Comput. 8, 5764.CrossRefGoogle Scholar
Kataria, K. K. and Khandakar, M. (2021). On the long-range dependence of mixed fractional Poisson process. J. Theoret. Prob. 34, 16071622.CrossRefGoogle Scholar
Kataria, K. K. and Khandakar, M. (2021). Mixed fractional risk process. J. Math. Anal. Appl. 504, 125379.CrossRefGoogle Scholar
Kataria, K. K. and Khandakar, M. (2022). Generalized fractional counting process. J. Theoret. Prob. 35, 27842805.CrossRefGoogle Scholar
Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam.Google Scholar
Kumar, A., Leonenko, N. and Pichler, A. (2020). Fractional risk process in insurance. Math. Financ. Econ. 14, 4365.CrossRefGoogle Scholar
Leonenko, N. N., Meerschaert, M. M., Schilling, R. L. and Sikorskii, A. (2014). Correlation structure of time-changed Lévy processes. Commun. Appl. Ind. Math. 6, e-483.CrossRefGoogle Scholar
Maheshwari, A. and Vellaisamy, P. (2016). On the long-range dependence of fractional Poisson and negative binomial processes. J. Appl. Prob. 53, 9891000.CrossRefGoogle Scholar
Orsingher, E. and Polito, F. (2012). The space-fractional Poisson process. Statist. Prob. Lett. 82, 852858.CrossRefGoogle Scholar
Orsingher, E. and Toaldo, B. (2015). Counting processes with Bernštein intertimes and random jumps. J. Appl. Prob. 52, 10281044.CrossRefGoogle Scholar
Pagan, A. (1996). The econometrics of financial markets. J. Empir. Finance 3, 15102.CrossRefGoogle Scholar
Sengar, A. S. and Upadhye, N. S. (2020). Subordinated compound Poisson processes of order k . Mod. Stoch. Theory Appl. 7, 395413.CrossRefGoogle Scholar
Veillette, M. and Taqqu, M. S. (2010). Numerical computation of first passage times of increasing Lévy processes. Methodology Comput. Appl. Prob. 12, 695729.CrossRefGoogle Scholar