Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-29T12:14:47.742Z Has data issue: false hasContentIssue false

Design and fabrication of optically transparent transmitarrays using inkjet-printing technology

Published online by Cambridge University Press:  29 April 2024

Han Chang
Affiliation:
Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
Fei-Peng Lai
Affiliation:
Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
Yen-Sheng Chen*
Affiliation:
Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
*
Corresponding author: Yen-Sheng Chen; Email: yschen@ntut.edu.tw

Abstract

This paper explores the use of inkjet-printing technology for transparent transmitarrays, presenting a viable alternative to traditional copper microwire counterparts. The study focuses on achieving high-gain performance crucial for wireless communication systems, with a particular emphasis on the fifth-generation (5G) millimeter-wave communication. Transparent transmitarrays leverage transparent conducting films and conductive mesh structures, overcoming opacity limitations and seamlessly integrating with urban architecture. In this paper, the inkjet-printing process is detailed for fabricating transmitarray apertures, highlighting the flexibility and precision in depositing nanosilver particles onto a glass substrate. The design intricacies involve optimizing feeding characteristics, determining unit cell structures, and constructing transmitarrays of various sizes. To validate the proposed technique, three different apertures (15 × 15, 20 × 20, and 25 × 25 unit cells) are constructed. The antenna performances are evaluated in terms of reflection coefficients, radiation efficiency, realized gain, and patterns, demonstrating the effectiveness of inkjet-printed transmitarrays. Comparative analysis with copper microwire counterparts is also conducted, validating the inkjet-printing technology for similar gain performance with added advantages of flexibility, compatibility with transparent substrates, and cost-effective manufacturing.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with The European Microwave Association.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, Y-S, Wu, Y-H and Chung, C-C (2020) Solar-powered active integrated antennas backed by a transparent reflectarray for CubeSat applications. IEEE Access 8, 137934137946.CrossRefGoogle Scholar
Peng, J-J, Qu, S and Xia, M (2020) Optically transparent reflectarray based on indium tin oxide with improved efficiency. IEEE Transactions on Antennas and Propagation 68(4), 32893294.CrossRefGoogle Scholar
Peng, J-J and Qu, S (2019) Single layer optically transparent reflectarray based on indium tin oxide. In 2019 IEEE MTT-S International Wireless Symposium, Guangzhou, China, May, 12.CrossRefGoogle Scholar
Kocia, C and Hum, SV (2016) Design of an optically transparent reflectarray for solar applications using indium tin oxide. IEEE Transactions on Antennas and Propagation 64(7), 28842893.CrossRefGoogle Scholar
Kocia, C and Hum, SV (2014) Optically transparent reflectarray for satellite applications. In The 8th European Conference on Antennas and Propagation, The Hague, Netherlands, April, 16071610.CrossRefGoogle Scholar
Wang, L, Hagiwara, H, Rikuta, Y, Kobayashi, T, Matsuno, H, Hayashi, T, Ito, S and Nakano, M (2021) Experimental investigation of optically transparent dual-polarized reflectarray with suppressed sidelobe level. In 2020 International Symposium on Antennas and Propagation, Osaka, Japan, January, 407408.CrossRefGoogle Scholar
Dreyer, P, Morales-Masis, M, Nicolay, S, Ballif, C and Perruisseau-Carrier, J (2014) Copper and transparent-conductor reflectarray elements on thin-film solar cell panels. IEEE Transactions on Antennas and Propagation 62(7), 38133818.CrossRefGoogle Scholar
Zainud-Deen, SH and Mabrouk, AM (2017) Graphene based metamaterial lens for terahertz applications. In 2017 Japan-Africa Conference on Electronics, Communications and Computers, Alexandria, Egypt, December, 148151.CrossRefGoogle Scholar
An, W, Xiong, L, Xu, S, Yang, F, Fu, H and Ma, J (2018) A Ka-band high-efficiency transparent reflectarray antenna integrated with solar cells. IEEE Access 6, 6084360851.CrossRefGoogle Scholar
Yekan, T and Baktur, R. (2016) Design of two transparent X band reflectarray antennas integrated on a satellite panel. In 2016 IEEE International Symposium on Antennas and Propagation, Fajardo, Puerto Rico, June, 14131414.CrossRefGoogle Scholar
Miao, Z-W, Hao, Z-C, Wang, Y, Jin, B-B, Wu, J-B and Hong, W (2019) A 400-GHz high-gain quartz-based single layered folded reflectarray antenna for terahertz applications. IEEE Transactions on Terahertz Science and Technology 9(1), 7888.CrossRefGoogle Scholar
Liu, Y, Wang, H, Liu, G and Dong, X (2017) Design of a transparent reflectarray integrated with solar cells using quad-key element. In 2017 Sixth Asia-Pacific Conference on Antennas and Propagation, Xi’an, China, October, 13.CrossRefGoogle Scholar
Liu, G, Dehghani Kodnoeih, MR, Pham, KT, Cruz, EM, Gonzalez-Ovejero, D and Sauleau, R (2019) A millimeter-wave multibeam transparent transmitarray antenna at Ka-band. IEEE Antennas and Wireless Propagation Letters 18(4), 631635.CrossRefGoogle Scholar
Liu, G, Cruz, EM, Pham, TK, Ovejero, DG and Sauleau, R (2018) Low scan loss bifocal Ka-band transparent transmitarray antenna. In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, Massachusetts, July, 14491450.CrossRefGoogle Scholar
Jiang, P, Jiang, W and Gong, S (2021) A mesh-type low RCS reflectarray antenna based on spoof surface plasmon polariton. IEEE Antennas and Wireless Propagation Letters 20(2), 224228.CrossRefGoogle Scholar
Chang, H, Lai, F-P and Chen, Y (2024) Transparent transmitarray antenna with large aperture for significant gain enhancement in millimeter-wave 5G communication networks. IEEE Antennas and Wireless Propagation Letters 23(2), 663667.CrossRefGoogle Scholar
Kumar, A (2024) Substrate integrated waveguide cavity‐backed slot antenna with low cross‐polarization over the full bandwidth. Microwave and Optical Technology Letters 66(1), 17.CrossRefGoogle Scholar
Liu, S, Wang, Y and Guo, L (2024) A low-cost ultrathin metal-only transmitarray antenna at X-band. In IEEE Antennas and Wireless Propagation Letters, 15.Google Scholar
Kausar, S, Kausar, A, Hadi, MU and Mehrpouyan, H (2024) Multi-beam high gain steerable transmitarray lens for satellite communication and 5G mm-Wave systems. AEU - International Journal of Electronics and Communications 173, 110.CrossRefGoogle Scholar
Belen, MA, Çalışkan, A, Koziel, S, Pietrenko‐Dabrowska, A and Mahoutı, P (2023) Optimal design of transmitarray antennas via low-cost surrogate modelling. Scientific Reports 13(1), 118.CrossRefGoogle ScholarPubMed