Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-07T15:01:03.053Z Has data issue: false hasContentIssue false

Pain pathways and parabrachial circuits in the rat

Published online by Cambridge University Press:  08 March 2002

Caroline Gauriau
Affiliation:
INSERM U-161, 2 rue d'Alésia, F-75014 Paris, France
Jean-François Bernard
Affiliation:
INSERM U-161, 2 rue d'Alésia, F-75014 Paris, France
Get access

Abstract

This review presents a schematic attempt to classify the major pain pathways, based on the results of recent studies in our laboratory, with a special emphasis on the parabrachial system. Our view is based on results from experiments in the rat, using very small iontophoretic injections of anterograde tracers. As illustrated in this report, we have found a very dramatic difference between ascending projections originating from deep laminae compared with those arising from lamina I of the dorsal horn. We propose three main pain systems and discuss their functional-anatomical relationships. The first system is centred on the projection from deep laminae to three caudal reticular areas - the lateral reticular nucleus (LRN), the subnucleus reticularis dorsalis (SRD) and the gigantocellular lateral paragigantocellular reticular nuclei (NGc) - and the parabrachial internal lateral subnucleus (PBil). The second system is centred on the projection from lamina I to the ventral posterolateral nucleus (VPL), the ventral posteromedial (VPM), the posterior nuclear group (Po) and triangular posterior nucleus (PoT) of the thalamus. The third system is centred on the projection from lamina I to the lateral parabrachial area. We also present the four main projections from the latter area to the extended amygdala, the hypothalamus, the periaqueductal grey matter (PAG), and the ventrolateral medulla (VLM), and their involvement in emotional and autonomic (homeostatic) aspects of pain. Experimental Physiology (2002) 87.2, 251-258.

Type
Physiological Society Symposium - Nociceptors as Homeostatic Afferents: Central Processing
Copyright
© The Physiological Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)