Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-01T16:07:35.672Z Has data issue: false hasContentIssue false

Sustainability assessment methodology oriented to soil-associated agricultural experiments

Published online by Cambridge University Press:  12 September 2023

Oscar Iván Monsalve Camacho*
Affiliation:
Programa de Ingeniería Agronómica, Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia
Oscar Gonzalo Castillo-Romero
Affiliation:
Agricultural & Biological Engineering Department and the Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, USA
Carlos Ricardo Bojacá Aldana
Affiliation:
Department of Basic Sciences and Modelling, Universidad Jorge Tadeo Lozano, Bogotá, Colombia
Martha Cecilia Henao Toro
Affiliation:
Agricultural Sciences Faculty, Universidad Nacional de Colombia, Bogotá, Colombia
*
Corresponding author: Oscar Iván Monsalve Camacho; Email: omonsalve@udca.edu.co

Summary

A variety of established tools are available for agricultural sustainability assessment at global, regional, and farm geographical scales. However, no assessment has been reported in research literature to indicate their ability to provide insights about the most sustainable cropping system at plot level or experimental unit. Despite the environmental and social importance of soil in agricultural systems, many of the sustainability assessments use few or no indicators related to soil properties or processes. Hence, we propose a sustainability assessment methodology oriented to soil-associated agricultural experiments (SMAES) by defining its parameters through simulations and testing the methodology with real data from a fertilization tomato experiment with five treatments: chemical control (CR); organic control (OR); and organic:chemical ratios (OR) of 25:75, 50:50, and 75:25. The distance from the maximum, principal component analysis, and product of weighted indicator techniques were chosen for normalization, weighting, and aggregation in a single index process, respectively. Applying the SMAES methodology, the sustainability level of the treatments followed this sequence: CR (0.95) > O25:C75 (0.73) > O50:C50 (0.60) > O75:C25 (0.55) > OR (0.45). The proposed SMAES methodology allows soil researchers to define the best treatment through the interaction of the environmental, social, and economic dimensions of agricultural systems.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikari, K. and Hartemink, A.E. (2016). Linking soils to ecosystem services – a global review. Geoderma 262, 101111. https://doi.org/10.1016/j.geoderma.2015.08.009 CrossRefGoogle Scholar
Adhikari, P., Araya, H., Aruna, G., Balamatti, A., Banerjee, S., Baskaran, P., Barah, B.C., Behera, D., Berhe, T., Boruah, P., Dhar, S., Edwards, S., Fulford, M., Gujja, B., Ibrahim, H., Kabir, H., Kassam, A., Khadka, R.B., Koma, Y.S., Natarajan, U.S., Perez, R., Sen, D., Sharif, A., Singh, G., Styger, E., Thakur, A.K., Tiwari, A., Uphoff, N. and Verma, A. (2018). System of crop intensification for more productive, resource-conserving, climate-resilient, and sustainable agriculture: experience with diverse crops in varying agroecologies. International Journal of Agricultural Sustainability 16, 128. https://doi.org/10.1080/14735903.2017.1402504 CrossRefGoogle Scholar
Afshar, R.K. and Dekamin, M. (2022). Sustainability assessment of corn production in conventional and conservation tillage systems. Journal of Cleaner Production 351, 131508. https://doi.org/10.1016/j.jclepro.2022.131508 CrossRefGoogle Scholar
Akinnifesi, F., Makumba, W. and Kwesiga, F. (2006). Sustainable maize production using gliricidia/maize intercropping in southern Malawi. Experimental Agriculture 42, 441457. https://doi.org/10.1017/S0014479706003814 CrossRefGoogle Scholar
Alaoui, A., Hallama, M., Bär, R., Panagea, I., Bachmann, F., Pekrun, C., Fleskens, L., Kandeler, E. and Hessel, R. (2022). A new framework to assess sustainability of soil improving cropping systems in Europe. Land 11, 729. https://doi.org/10.3390/land11050729 CrossRefGoogle Scholar
Antón, A. (2004). Utilización del análisis del ciclo de vida en la evaluación del impacto ambiental del cultivo bajo invernadero mediterráneo. Barcelona. Universitat Politècnica de Catalunya. PhD Thesis. http://tdx.cat/handle/10803/6827.Google Scholar
Astier, M., Speelman, E.N., López-Ridaura, S., Masera, O.R. and Gonzalez-Esquivel, C.E. (2011). Sustainability indicators, alternative strategies, and trade-offs in peasant agroecosystems: analysing 15 case studies from Latin America. International Journal of Agricultural Sustainability 9, 409422. https://doi.org/10.1080/14735903.2011.583481 CrossRefGoogle Scholar
Baush, J.C., Bojórquez, L.T. and Eakin, H. (2014). Agro-environmental sustainability assessment using multicriteria decision analysis and system analysis. Sustainability Science 117. https://doi.org/10.1007/s11625-014-0243-y Google Scholar
Bergström, L.F. and Kirchmann, H. (2010). Leaching of total nitrogen from nitrogen-15-labeled poultry manure and inorganic nitrogen fertilizer. Journal of Environmental Quality 28, 1283. https://doi.org/10.2134/jeq1999.00472425002800040032x CrossRefGoogle Scholar
Binder, C.R., Feola, G. and Steinberger, J.K. (2010). Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environmental Impact Assessment Review 30, 7181. https://doi.org/10.1016/j.eiar.2009.06.002 CrossRefGoogle Scholar
Bogotá Trade Chamber (CCB). (2019). Steps to create company. Available at www.ccb.org.co; (accessed 25 June 2019).Google Scholar
Bojacá, C.R., Wyckhuys, K.A.G. and Schrevens, E. (2014). Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. Journal of Cleaner Production 69, 2633. https://doi.org/10.1016/j.jclepro.2014.01.078 CrossRefGoogle Scholar
Dantsis, T., Douma, C., Giourga, C., Loumou, A. and Polychronaki, E.A. (2010). A methodological approach to assess and compare the sustainability level of agricultural plant production systems. Ecological Indicators 10, 256263. https://doi.org/10.1016/j.ecolind.2009.05.007 CrossRefGoogle Scholar
De Olde, E., Moller, H., Marchand, F., McDowell, R.W., MacLeod, C.J., Sautier, M., Halloy, S., Barber, A., Benge, J., Bockstaller, C., Bokkers, E.A.M., De Boer, I.J.M., Legun, K.A., Le Quellec, I., Merfield, C., Oudshoorn, F.W., Reid, J., Shader, C., Szymanski, E., Sorensen, C.A.G., Whitehead, J. and Manhire, J. (2016). When experts disagree: the need to rethink indicator selection for assessing sustainability of agriculture. Environment, Development and Sustainability 116. https://doi.org/10.1007/s10668-016-9803-x Google Scholar
De Paul Obade, V. and Lal, R. (2016). A standardized soil quality index for diverse field conditions. Science of the Total Environment 541, 424434. https://doi.org/10.1016/j.scitotenv.2015.09.096 CrossRefGoogle ScholarPubMed
Deytieux, V., Munier-Jolain, N. and Caneill, J. (2016). Assessing the sustainability of cropping systems in single- and multi-site studies. A review of methods. European Journal of Agronomy 72, 107126. https://doi.org/10.1016/j.eja.2015.10.005 CrossRefGoogle Scholar
Direction of National Taxes and Customs (DIAN) (2019). Tax estatus. Available at www.dian.gov.co (accessed 25 June 2019).Google Scholar
Dong, F., Mitchell, P.D. and Colquhoun, J. (2015). Measuring farm sustainability using data envelope analysis with principal components: the case of Wisconsin cranberry. Journal of Environmental Management 147, 175183. https://doi.org/10.1016/j.jenvman.2014.08.025 CrossRefGoogle ScholarPubMed
Ecoinvent Centre. (2017). Ecoinvent Data V. 2.0. Version 3.4. Swiss centre for life cycle inventories. Available at http://www.ecoinvent.org.Google Scholar
Freudenberg, M. (2003). Composite indicators of country performance: a critical assessment. OECD Science, Technology Industry Working Paper 16, 35. https://doi.org/10.1787/405566708255 Google Scholar
Gómez-Limón, J.A. and Sanchez-Fernandez, G. (2010). Empirical evaluation of agricultural sustainability using composite indicators. Ecological Economics 69, 10621075. https://doi.org/10.1016/j.ecolecon.2009.11.027 CrossRefGoogle Scholar
Gu, Y.J., Han, C.L., Fan, J.W., Shi, X.P., Kong, M., Shi, X.Y., Siddique, K.H.M., Zhao, Y.Y. and Li, F.M. (2018). Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. Fields Crops Research 215, 94103. https://doi.org/10.1016/j.fcr.2017.10.010 CrossRefGoogle Scholar
Guinée, J.B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., De Koning, A., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., De Bruijn, J.A., Van Duin, R. and Huijbregts, M.A.J. (2004). Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. The Netherlands: Kluwer.Google Scholar
Hayakawa, A., Akiyama, H., Sudo, S. and Yagi, K. (2009). N2O and NO emissions from an Andisol field as influenced by pelleted poultry manure. Soil Biology and Biochemistry 41, 521529. https://doi.org/10.1016/j.soilbio.2008.12.011 CrossRefGoogle Scholar
Hediger, W. (1999). Reconciling ‘weak’ and ‘strong’ sustainability. International Journal of Social Economics 26, 11201143. https://doi.org/10.1108/03068299910245859 CrossRefGoogle Scholar
Heijungs, R. and Guinée, J.B. (2012). An overview of the life cycle assessment method – past, present, and future. In: Curran, M. A (ed), Life Cycle Assessment Handbook. A Guide for Environmentally Sustainable Products. USA: Willey, pp. 1542. https://doi.org/10.1002/9781118528372.ch2 CrossRefGoogle Scholar
Karibskii, A.V., Shishorin, Y.R. and Yurchenko, S.S. (2003a). Financial and economic analysis and efficiency evaluation of investment projects and programs. I. Automation and Remote Control 64, 886904. https://doi.org/10.1023/a:1024129430374 CrossRefGoogle Scholar
Karibskii, A.V., Shishorin, Y.R. and Yurchenko, S.S. (2003b). Financial and economic analysis and efficiency evaluation of investment projects and programs. II. Automation and Remote Control 64, 12051224. https://doi.org/10.1023/a:1025003529815 CrossRefGoogle Scholar
Lanfranco, B.C. and Helguera, L.P. (2006). Óptimo técnico y económico. Diversificación, costos ocultos y los estímulos para mejorar los procreos en la ganadería nacional. Revista INIA 8, 25.Google Scholar
Lebacq, T., Baret, P.V. and Stilmant, D. (2013). Sustainability indicators for livestock farming. A review. Agronomy for Sustainable Development 33, 311327. https://doi.org/10.1007/s13593-012-0121-x CrossRefGoogle Scholar
Marchand, F., Debruyne, L., Triste, L., Gerrard, C., Padel, S. and Lauwers, L. (2014). Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecology and Society 19, 4656. https://doi.org/10.5751/ES-06876-190346 CrossRefGoogle Scholar
Monsalve, C.O.I., Bojacá, A.C.R. and Henao, T.M.C. (2021a). Agricultural sustainability indicators associated with soil properties, processes, and management. Corpoica Ciencia y Tecnologia Agropecuaria 22, e1919. https://doi.org/10.21930/rcta.vol22_num3_art:1919 Google Scholar
Monsalve, C.O.I., Gutiérrez, D.J.S., Bojacá, A.C.R., Henao, T.M.C. and Espitia, M.E.M. (2021b). Soil quality indicators with potential use at plot or experimental unit scale. Eurasian Soil Science 54, 6275. https://doi.org/10.1134/S1064229321140027 CrossRefGoogle Scholar
Monsalve, C.O.I. and Henao, T.M.C. (2022). Selection of the minimum indicator set for agricultural sustainability assessments at the plot scale. Agronomia Colombiana 40. https://doi.org/10.15446/agron.colomb.v40n1.98797 Google Scholar
Moore, A., Dormody, T., VanLeeuwen, D. and Harder, A. (2014). Agricultural sustainability of small-scale farms in Lacluta, Timor Leste. International Journal of Agricultural Sustainability 12, 130145. https://doi.org/10.1080/14735903.2013.842341 CrossRefGoogle Scholar
Munda, G. (2005). “Measuring sustainability”: a multi-criterion framework. Environment, Development and Sustainability 7, 117134. https://doi.org/10.1007/s10668-003-4713-0 CrossRefGoogle Scholar
OECD, Organization for Economic Co-operation and Development — JRC, Joint Research Centre (2008). Handbook on Constructing Composite Indicators. Methodology and User Guide, 1st ed. Paris: OECD.Google Scholar
Pretty, J., Sutherland, W.J., Ashby, J., Auburn, J., Baulcombe, D., Bell, M., Bentley, J., Bickersteth, S., Brown, K., Burke, J., Campbell, H., Chen, K., Crowley, E., Crute, I., Dobbelaere, D., Edwards-Jones, G., Funes-Monzote, F., Godfray, H.C.J., Griffon, M., Gypmantisiri, P., Haddad, L., Halavatau, S., Herren, H., Holderness, M., Izac, A.M., Jones, M., Koohafkan, P., Lal, R., Lang, T., McNeely, J., Mueller, A., Nisbett, N., Noble, A., Pingali, P., Pinto, Y., Rabbinge, R., Ravindranath, N.H., Rola, A., Roling, N., Sage, C., Settle, W., Sha, J.M., Shiming, L., Simons, T., Smith, P., Strzepeck, K., Swaine, H., Terry, E., Tomich, T.P., Toulmin, C., Trigo, E., Twomlow, S., Vis, J.K., Wilson, J. and Pilgrim, S. (2010). The top 100 questions of importance to the future of global agriculture. International Journal of Agricultural Sustainability 8, 219236. https://doi.org/10.3763/ijas.2010.0534 CrossRefGoogle Scholar
Rossi, J.P., Franc, A. and Rousseau, G.X. (2009). Indicating soil quality and the GISQ. Soil Biology and Biochemistry 41, 444445. https://doi.org/10.1016/j.soilbio.2008.10.004 CrossRefGoogle Scholar
Starkl, M., Brunner, N., Das, S. and Singh, A. (2022). Sustainability assessment for wastewater treatment systems in developing countries. Water 14, 241. https://doi.org/10.3390/w14020241 CrossRefGoogle Scholar
Tóth, G., Hermann, T., da Silva, M.R. and Montanarella, L. (2018). Monitoring soil for sustainable development and land degradation neutrality. Environmental Monitoring and Assessment 190. https://doi.org/10.1007/s10661-017-6415-3 CrossRefGoogle ScholarPubMed
Uphoff, N. (2003). Higher yields with fewer external inputs? The system of rice intensification and potential contributions to agricultural sustainability. International Journal of Agricultural Sustainability 1, 3850. https://doi.org/10.3763/ijas.2003.0105 CrossRefGoogle Scholar
Van Asselt, E.D., Van Bussel, L.G.J., Van der Voet, H., Van der Heijden, G.W.A.M., Tromp, S.O., Rijgersberg, H., Van Evert, F. and Van Wagenberg, C.P.A. (2014). A protocol for evaluating the sustainability of agri-food production systems-A case study on potato production in peri-urban agriculture in The Netherlands. Ecological Indicators 43, 315321. https://doi.org/10.1016/j.ecolind.2014.02.027 CrossRefGoogle Scholar
van der Vossen, H. (2005). A critical analysis of the agronomic and economic sustainability of organic coffee production. Experimental Agriculture 41, 449473. https://doi.org/10.1017/S0014479705002863 CrossRefGoogle Scholar
Wang, L., Palta, J.A., Chen, W., Chen, Y. and Deng, X. (2018). Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agricultural Water Management 197, 4153. https://doi.org/10.1016/j.agwat.2017.11.010 CrossRefGoogle Scholar
Supplementary material: File

Monsalve Camacho et al. supplementary material

Monsalve Camacho et al. supplementary material

Download Monsalve Camacho et al. supplementary material(File)
File 13.6 MB