Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-19T05:04:09.429Z Has data issue: false hasContentIssue false

Resistance of sugarcane hybrids to internode borer Chilo sacchariphagus indicus (Lepidoptera: Crambidae)

Published online by Cambridge University Press:  21 February 2024

P. Mahesh*
Affiliation:
Section of Entomology, ICAR-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu State, India
B. Singaravelu
Affiliation:
Section of Entomology, ICAR-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu State, India
J. Srikanth
Affiliation:
Section of Entomology, ICAR-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu State, India
K. P. Salin
Affiliation:
Section of Entomology, ICAR-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu State, India
K. Chandran
Affiliation:
ICAR-Sugarcane Breeding Institute Research Center, Kannur 670002, Kerala State, India
R. Nirmala
Affiliation:
Section of Entomology, ICAR-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu State, India
*
Corresponding author: P. Mahesh; Email: agrimahesh@gmail.com

Abstract

A four-year field study (2013–2016) was conducted to screen Indian sugarcane hybrids together with two susceptible checks against internode borer Chilo sacchariphagus indicus (Kapur) (Lepidoptera: Crambidae) in endemic locations of Tamil Nadu State, India. Each year, borer incidence on cane basis and intensity on internode basis were assessed at harvest to eliminate susceptible entries. Of the total 535 hybrids screened, only Co 293 emerged as resistant at the end of fourth year trial which was confirmed in tests under controlled conditions with artificial infestation. A modified relative resistance ratio computed using incidence and intensity also confirmed its resistance to the borer. In laboratory oviposition choice tests with excised leaves of the resistant Co 293 and susceptible hybrids Co 86032 and Co 1060, percent of leaf bits oviposited, egg masses laid, and egg numbers deposited were significantly lowest in Co 293. Also, an oviposition preference index computed for both egg mass number and egg number was significantly lowest for Co 293 which suggested antixenosis. Larval survival was significantly lowest in Co 293 with 5 to 10-fold higher neonate mortality than in the two susceptible hybrids. Prolonged larval development period and lower fecundity were observed when the borer was reared on Co 293 which indicated antibiosis. A relative suitability ratio developed from larval and pupal durations also indicated lower suitability of Co 293. Among the plant morphological characters examined, leaf length and cane thickness positively influenced borer incidence; loose sheath-clasp was associated with higher borer incidence. Among 12 shoot phenolics quantified, eight were present in higher quantities in Co 293 suggesting their role in antibiosis. Co 293 identified as resistant hybrid in the present study has the potential to be used as a parent in breeding programs for C. sacchariphagus indicus resistance.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agelopoulos, N.G., Chamberlain, K. and Pickett, J.A. (2000). Factors affecting volatile emissions of intact potato plants, Solanum tuberosum: variability of quantities and stability of ratios. Journal of Chemical Ecology 26, 497511. https://doi.org/10.1023/A:1005473825335 CrossRefGoogle Scholar
Albert, S., Thirumalai, M., Krishnamurthi, M., Ramya, M., Lourdusamy, A. and Gopinathan, M.C. (2007). Evaluation of tolerance and susceptibility against internode borer of sugarcane. Sugar Tech 9, 308311.Google Scholar
Ananthanarayana, K. and David, H. (1986). Chemical control. In David, H., Easwaramoorthy, S. and Jayanthi, R. (eds), Sugarcane Entomology in India. Coimbatore, India: Sugarcane Breeding Institute, pp. 423435.Google Scholar
Anonymous (2018). Annual Report 2017-18, Coimbatore: ICAR-Sugarcane Breeding Institute, 208pGoogle Scholar
Artschwager, E. and Brandes, E. W. (1958). Sugarcane (Saccharum officinarum L.): Origin, classification, characteristics and descriptions of representative clones. United States Department of Agriculture Handbook. No. 122, 307 p.Google Scholar
Asha, N., Patel, V.N., Sugeetha, G., Pankaja, N.S., Mahdev, J. and Kamaraddi, V. (2019). Antixenosis and antibiosis of sugarcane varieties on the incidence of sugarcane internode borer, Chilo sacchariphagus indicus . International Journal of Chemical Studies 7, 10081012.Google Scholar
Babu, C., Koodalingam, K., Natarajan, U. S., Shanthi, R. M. and Govindaraj, P. (2009). Assessment of rind hardness in sugarcane (Sachharum spp. Hybrids) genotypes for development of non-lodging erect canes. Advances in Biological Research 3, 4852.Google Scholar
Balasundaram, N., Pramachandran, M.N., Chandran, K. and Natarajan, U.S. (2005). Catalogue on Sugarcane Genetic Resources VI. Indian Hybrids at Sugarcane Breeding Institute, Kannur. Sugarcane Breeding Institute, Coimbatore, India. 237 p.Google Scholar
Bessin, R. T., Reagan, T. E. and Martin, F. A. (1990). A moth production index for evaluating sugarcane cultivars for resistance to the sugarcane borer (Lepidoptera: Pyralidae). Journal of Economic Entomology 83, 221225. https://doi.org/10.1093/jee/83.1.221 CrossRefGoogle Scholar
Bhavani, B., Reddy, K.D., Rao, N.V. and Lakshmi, M.B. (2012). Biochemical basis for antibiosis mechanism of resistance in sugarcane to early shoot borer, Chilo infuscatellus Snellen. Tropical Agricultural Research 23, 126141. http://doi:10.4038/tar.v24i2.7998 CrossRefGoogle Scholar
Clements, H.F. and Ghotb, A. 1969. The numbering of leaves and internodes for sugarcane nutrition studies. Proceedings of the International Society of Sugarcane Technologists XIII Congress, Taiwan, pp. 569–584.Google Scholar
David, H. (1986). The internode borer, Chilo sacchariphagus indicus (Kapur). In David, H., Easwaramoorthy, S. and Jayanthi, R. (eds), Sugarcane Entomology in India. Coimbatore, India: Sugarcane Breeding Institute, pp. 121134 Google Scholar
David, H. and Nandagopal, V. (1986). Pests of sugarcane – distribution, symptomology of attack and identification. In David, H., Easwaramoorthy, S. and Jayanthi, R. (eds), Sugarcane Entomology in India. Coimbatore, India: Sugarcane Breeding Institute, pp. 129 Google Scholar
Duttamajumder, S.K. (2020). Moth borers of sugarcane. Daya Publishing House, New Delhi, India. 639 p.Google Scholar
Easwaramoorthy, S. and Nandagopal, V. (1986). Life tables of internode borer, Chilo sacchariphagus indicus (K.) on resistant and susceptible varieties of sugarcane. Tropical Pest Management 32, 221228. https://doi.org/10.1080/09670878609371067 CrossRefGoogle Scholar
Goebel, R., Fernandez, E., Tibere, R. and Alauzet, C. (1999). Damage and yield losses to sugarcane caused by the stem borer Chilo sacchariphagus (Bojer) (Lep.: Pyralidae) on Reunion. Annales- Societe Entomologique de France 35, 476481.Google Scholar
Govindaraj, P., Parthiban, S., Hari, K., Naik, R. and Kotwaliwale, N. (2014). Non-destructive and simple estimation of fibre content – an aid to energy cane development programme. In Viswanathan, R., Bhaskaran, A., Hemaprabha, G., Ramasubramanian, T. and Nair, N.V. (eds), Proceedings of the Symposium on Bioenergy for Sustainable Development – The Potential Role of Sugar Crops. Coimbatore, India: Sugarcane Breeding Institute (ICAR), pp. 123126.Google Scholar
Jayakumar, J. (2018). Screening of sugarcane clones for resistance to early shoot borer and internode borer. Annals of Plant Science 26, 270275. https://doi.org/10.5958/0974-0163.2018.00061.7 Google Scholar
Jayanthi, R. (1988). Evaluation of Saccharum clones for resistance to the sugarcane internode borer. Sugar Cane (Spring Supplement):17–18.Google Scholar
Jhansi, K. and Rao, B.R. (1996). Evaluation of promising varieties of sugarcane for shoot borer and internode borer under different dates of plantings. Cooperative Sugar 27, 675679.Google Scholar
Keeping, M.G. (2006). Screening of South African sugarcane cultivars for resistance to the stalk borer, Eldana saccharina Walker (Lepidoptera: Pyralidae). African Entomology 14, 277288.Google Scholar
Korowi, K. T. and Samson, P. R. (2013). Screening for borer resistance among sugarcane clones in Papua New Guinea, 2010–2012. Proceedings of Australian Society of Sugarcane Technologists 35, 19.Google Scholar
Long, W.H. and Hensley, S.D. (1972). Insect pests of sugar cane. Annual Review of Entomology 17, 149176. https://doi.org/10.1146/annurev.en.17.010172.001053 CrossRefGoogle Scholar
Mahesh, P., Srikanth, J., Chandran, K. and Singaravelu, B. (2018). Resistance of Saccharum spp. against Chilo sacchariphagus indicus (Kapur) (Lepidoptera: Crambidae) in India. Experimental Agriculture 54, 8395. https://doi.org/10.1017/S0014479716000697.CrossRefGoogle Scholar
Mahesh, P., Srikanth, J., Salin, K.P., Singaravelu, B., Chandran, K. and Mahendran, B. (2019). Phenology of sugarcane leaf hopper Pyrilla perpusilla (Walker) (Homoptera: Lophopidae) and its natural enemies in a crop island scenario. Crop Protection 120, 151162. https://doi.org/10.1016/j.cropro.2019.02.020 CrossRefGoogle Scholar
Mehta, U.K. and David, H. (1978). A laboratory technique for rearing the sugarcane internode borer, Chilo sacchariphagus indicus K. on artificial medium. Indian Sugar 28, 3841.Google Scholar
Milligan, S.B., Balzarini, M. and White, W.H. (2003). Broad-sense heritabilities, genetic correlations, and selection indices for sugarcane borer resistance and their relation to yield loss. Crop Science 47, 17291735. https://doi.org/10.2135/cropsci2003.1729 CrossRefGoogle Scholar
Mukunthan, N. (2001). Reaction of Erianthus to sugarcane pests. In Sreenivasan, T.V., Amalraj, V.A. and William Jebadas, A. (eds), Catalogue on Sugarcane Genetic Resources- IV. Erianthus species. Coimbatore, India: Sugarcane Breeding Institute, pp. 73.Google Scholar
Mukunthan, N. and Rakkiyappan, P. (1989). Bunchy top formation in sugar cane caused by the internode borer and its effect on yield and quality. Sugar Cane 2, 1719.Google Scholar
Nalawade, S.V., Indi, D.V., Bhilare, R.L., Thorvae, D.S., Raskar, B.S. (2022). Field screening of promising sugarcane genotypes against whip smut disease and borer pests. Pharma Innovation 11, 20172019.Google Scholar
Pasupathy, S., Shanmuganathan, M., Ravichandran, V. and Babu, C. (2021). Field screening of sugarcane clones against the internode borer, Chilo sacchariphagus indicus . Uttar Pradesh Journal of Zoology 42, 5461.Google Scholar
Posey, F.R., White, W.H., Reay-Jones, F.P.F., Gravois, K., Salassi, M.E., Leonard, B.R. and Reagan, T.E. (2006). Sugarcane borer (Lepidoptera: Crambidae) management threshold assessment on four sugarcane cultivars. Journal of Economic Entomology 99, 966971. https://doi.org/10.1093/jee/99.3.966 CrossRefGoogle ScholarPubMed
Puthira Prathap, D., Karpagam, C., Bhaskaran, A. and Nair, N.V. (2014). Compendium of Research Articles and Status Papers, 45th meeting of Sugarcane Research and Development Workers of Tamil Nadu and Pondicherry, August 26-27, 2014, Tiruchirappalli. Sugarcane Breeding Institute, Coimbatore. 328 p. ISSN: 0973-8185.Google Scholar
Radadia, G.G. and Shinde, C.U. (2013). Research methodology for recording observations of sugarcane pests. AICRP on Sugarcane, Indian Institute of Sugarcane Research, Lucknow, India. 35 p.Google Scholar
Rajendran, B., Gopalan, M. and Hanifa, A.M. (1996). Screening for field reaction of sugarcane to internode borer Chilo sacchariphagus indicus (Kapur). Indian Sugar 46(4): 257261.Google Scholar
Reagan, T.E. and Mulcahy, M.M. (2019). Interaction of cultural, biological, and varietal controls for management of stalk borers in Louisiana sugarcane. Insects 10, 305. https://doi.org/10.3390/insects10090305 CrossRefGoogle ScholarPubMed
Reagan, T.E., Way, M.O., Beuzelin, J.M. and Akbar, W. (2008). Assessment of varietal resistance to the sugarcane borer and the Mexican rice borer. Sugarcane Annual Progress Reports 2008, Louisiana State University Agricultural Center, Baton Rouge. 182p.Google Scholar
Reay-Jones, F.P.F., Way, M.O., Tamou, M.Se., Legendre, B.L. and Reagan, T.E. (2003). Resistance to the Mexican rice borer (Lepidoptera: Crambidae) among Louisiana and Texas sugarcane cultivars. Journal of Economic Entomology 96, 19291934. https://doi.org/10.1093/jee/96.6.1929 CrossRefGoogle Scholar
Reay-Jones, F.P.F., Showler, A.T., Reagan, T.E., Legendre, B.L., Way, M.O. and Moser, E.B. (2005). Integrated tactics for managing the Mexican rice borer (Lepidoptera: Crambidae) in sugarcane. Environmental Entomology 34, 15581565. https://doi.org/10.1603/0046-225X-34.6.1558 CrossRefGoogle Scholar
Reay-Jones, F.P.F., Wilson, L.T., Showler, A.T., Reagan, T.E. and Way, M.O. (2007). Role of oviposition preference in an invasive Crambid impacting two graminaceous host crops. Environmental Entomology 36: 938951. https://doi.org/10.1093/ee/36.4.938 CrossRefGoogle Scholar
Salgado, L.D., Wilson, B.E., Richard, R.T., Penn, H.J. and Way, M.O. (2022a). Characterization of resistance to the Mexican rice borer (Lepidoptera: Crambidae) among Louisiana sugarcane cultivars. Insects 13, 890. https://doi.org/10.3390/insects13100890 CrossRefGoogle Scholar
Salgado, L.D., Wilson, B.E., Villegas, J.M., Richard, R.T. and Penn, H.J. (2022b). Resistance to the sugarcane borer (Lepidoptera: Crambidae) in Louisiana sugarcane cultivars. Environmental Entomology 51, 196203. https://doi.org/10.1093/ee/nvab118 CrossRefGoogle Scholar
Salin, K.P., Srikanth, J., Singaravelu, B. and Nirmala, R. (2021). Decoding chemical signals in head-space volatiles involved in tri-trophic interactions and induced resistance: A case study in sugarcane. Proceedings of the International Conference on Sugarcane Research: Sugarcane for Sugar and Beyond, 516-517. Coimbatore, India: ICAR-Sugarcane Breeding Institute.Google Scholar
Sallam, M. and Allsopp, P. (2003). Preparedness for borer incursion: SRDC final report BSS. 249p.Google Scholar
Showler, A.T. and Reagan, T.E. (2012). Ecology and tactics of control for three sugarcane stalk boring species in the Western Hemisphere and Africa. In Gonclaves, J. and Correia, K. (eds), Sugarcane: production, cultivation and uses. Nova Science Publishers, Ha, pp. 115 Google Scholar
Showler, A.T. and Reagan, T.E. (2017). Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae): range expansion, biology, ecology, control tactics, and new resistance factors in United States sugarcane. American Entomologist 63, 3651. https://doi.org/10.1093/ae/tmx013 CrossRefGoogle Scholar
Srikanth, J. and Kurup, N.K. (2011). Damage pattern of sugarcane internode borer Chilo sacchariphagus indicus (Kapur) in Tamil Nadu State, southern India. International Sugar Journal 113, 590594.Google Scholar
Srikanth, J., Salin, K.P., Kurup, N.K., Karthikeyan, J., Mukunthan, N. and Singaravelu, B. (2009). Reaction of sugarcane clones to woolly aphid, Ceratovacuna lanigera, attack and its relationship with leaf phenolics. Sugar Cane International 27, 204209.Google Scholar
StatSoft. (2004). STATISTICA (data analysis software system), version 7. Available from: www.statsoft.com.Google Scholar
Sundara, B. (1998). Sugarcane Cultivation. New Delhi, India: Vikas Publishing House. 292p.Google Scholar
Tomaz, A., Coutinho, A., Soares, B., Peternelli, L., Pereira, E. and Barbosa, M. (2018). Assessing resistance of sugarcane varieties to sugarcane borer Diatraea saccharalis Fab. (Lepidoptera: Crambidae). Bulletin of Entomological Research 108, 547555. https://doi.org/10.1017/S0007485317001183 CrossRefGoogle ScholarPubMed
Tonnesen, H.H. and Karlsen, J. (1983). High-performance liquid chromatography of curcumin and related compounds. Journal of Chromatography A 259, 367371. https://doi.org/10.1016/S0021-9673(01)88022-5 CrossRefGoogle Scholar
White, W.H. (1993). Movement and Establishment of Sugarcane Borer (Lepidoptera: Pyralidae) Larvae on Resistant and Susceptible Sugarcane. Florida Entomologist 76, 465473. https://doi.org/10.2307/3495647 CrossRefGoogle Scholar
White, W.H., Tew, T.L. and Richard, E.P. Jr (2006). Association of sugarcane pith, rind hardness, and fiber with resistance to the sugarcane borer. Journal of American Society of SugarCane Technologists 26, 87100.Google Scholar
White, W.H., Viator, R.P., Dufrene, E.O., Dalley, C.D., Richard, E. P. Jr. and Tew, T.L. (2008). Re-evaluation of sugarcane borer (Lepidoptera: Crambidae) bioeconomics in Louisiana. Crop Protection 27, 12561261. https://doi.org/10.1016/j.cropro.2008.03.011 CrossRefGoogle Scholar
Wilson, B.E., Van Weelden, M.T., Beuzelin, J.M., Reagan, T.E., Way, M.O., White, W.H., Wilson, L.T. and Showler, A.T. (2015). A relative resistance ratio for evaluation of Mexican rice borer (Lepidoptera: Crambidae) susceptibility among sugarcane cultivars. Journal of Economic Entomology 108, 13631370. https://doi.org/10.1093/jee/tov076 CrossRefGoogle ScholarPubMed
Wilson, B.E., White, W.H., Richard, R.T. and Johnson, R.M. (2021). Evaluation of sugarcane borer, Diatraea saccharalis, resistance among commercial and experimental cultivars in the Louisiana sugarcane cultivar development program. International Sugar Journal 123, 256261.Google Scholar
Yalawar, S., Pradeep, S., Ajith Kumar, M.A., Hosamani, V. and Rampure, S. (2010). Biology of sugarcane internode borer, Chilo sacchariphagus indicus (Kapur). Karnataka Journal of Agricultural Sciences 23, 140141.Google Scholar
Supplementary material: File

Mahesh et al. supplementary material

Mahesh et al. supplementary material
Download Mahesh et al. supplementary material(File)
File 29.6 KB