Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-18T11:26:16.954Z Has data issue: false hasContentIssue false

Drought responses in Coffea arabica as affected by genotype and phenophase. I – leaf distribution and branching

Published online by Cambridge University Press:  01 March 2024

Miroslava Rakocevic*
Affiliation:
Department of Plant Biology, Laboratory of Crop Physiology, State University of Campinas (UNICAMP), Institute of Biology, 13083-862 Campinas, SP, Brazil Laboratory of Ecophysiology, Agronomic Institute of Paraná (IAPAR), 86047-902 Londrina, PR, Brazil
Fabio Takeshi Matsunaga
Affiliation:
Laboratory of Ecophysiology, Agronomic Institute of Paraná (IAPAR), 86047-902 Londrina, PR, Brazil Faculty of Industry, Laboratory of Software Engineering, UniSENAI PR, 86026-040 Londrina, PR, Brazil
Ricardo Antônio Almeida Pazianotto
Affiliation:
Laboratory of Geoprocessing, Embrapa Environment, 13820-000 Jaguariúna, SP, Brazil
José Cochicho Ramalho
Affiliation:
Plant Stress & Biodiversity Lab, Forest Research Center (CEF), Associate Laboratory TERRA, School of Agriculture University of Lisbon (ISA/ULisboa), 2784-505 Oeiras, Portugal GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa (FCT/UNL), 2829-516 Caparica, Portugal
Evelyne Costes
Affiliation:
AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier Cedex 5, France
Rafael Vasconcelos Ribeiro
Affiliation:
Department of Plant Biology, Laboratory of Crop Physiology, State University of Campinas (UNICAMP), Institute of Biology, 13083-862 Campinas, SP, Brazil
*
Corresponding author: Miroslava Rakocevic; Email: mima.rakocevic61@gmail.com

Summary

In Coffea arabica, there is a small genetic distance between wild and bred genotypes. However, coffee genotypes express differential acclimation to multiple drought cycles, allowing them to successfully deal with water-limiting conditions. We hypothesized that bred coffee cultivars have a plant structure less sensitive to drought than wild genotypes. Plant and leaf architecture were analyzed over the coffee strata of two cultivars (Iapar 59 and Catuaí 99) and two wild Ethiopia accessions (‘E083’ and ‘E027’) grown under rainfed conditions and irrigation. During two consecutive productive years, evaluations were taken at leaf and berry expansion (BE1 and BE2) and harvest (BH1 and BH2) phenophases. The plant canopy was divided into up to four strata of 40 cm of thickness. Topological and geometric coding of coffee trees was performed in three botanical scales – metamers, branches, and plants in multiscale tree graphs (MTGs), following the VPlants modeling platform. Leaf and branch area per plant increased with tree structure development, being always significantly higher in irrigated than in rainfed plants over all phenophases. The individual leaf area was the least sensitive to water regime in Catuaí 99, while the 2nd order axis elevation – angle in relation to horizontal plane, ranging from 0° to 90° – of bred cultivars was less sensitive to drought than in ‘E083’. This finding partially corroborated our hypothesis that orchestrated reprograming of leaf/branch responses over the vertical plant profile were less sensitive to water availability in cultivars than in wild accessions. Leaves of 2nd to 4th-order branching were roughly plagiophile, while the 1st-order leaves were classified as extremophiles. When the coffee leaves were planophile, irrespective of genotype, this pattern was found at the lowest, 1st plant stratum, and the newest developed 4th stratum. Such responses were not obligatorily related to water regime, similar to branch elevation – with exception of ‘E083’, very sensitive to drought. Taken together, our data suggest that the leaf and branch elevations in C. arabica were more influenced by light distribution through the canopy profile – i.e., self-shading – than by water availability.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, W.L., Ávila, R.T., Pérez-Molina, J.P., Barbosa, M.L., Marçal, D.M.S., de Souza, R.P.B., Martino, P.B., Cardoso, A.A., Martins, S.C.V. and DaMatta, F.M. (2021). The interplay between irrigation and fruiting on branch growth and mortality, gas exchange, and water relations of coffee trees. Tree Physiology 41, 3549. https://doi.org/10.1093/treephys/tpaa116 Google Scholar
Anthony, F., Bertrand, B., Etienne, H. and Lashermes, P. (2011). Coffea and Psilanthus. In Kole, C. (ed), Wild Crop Relatives: Genomic and Breeding Resources, Plantation and Ornamental Crops. Heidelberg, Berlin: Springer–Verlag, pp. 4161. https://doi.org/10.1007/978-3-642-21201-7_3 Google Scholar
Anthony, F., Quiros, O., Topart, P, Bertrand, B. and Lashermes, P. (2002). Detection by simple sequence repeat markers of introgression from Coffea canephora in Coffea arabica cultivars. Plant Breeding 121, 542544. https://doi.org/10.1046/j.1439-0523.2002.00748.x Google Scholar
Avila, R.T., Almeida, W.L., Costa, L.C., Machado, K.L.G., Barbosa, M.L., Souza, R.P.B., Martino, P.B., Juárez, M.A.T., Marçal, D.M.S., Martins, S.C.V., Ramalho, J.D.C. and DaMatta, F.M. (2020). Elevated air [CO2] improves photosynthetic performance and alters biomass accumulation and partitioning in drought-stressed coffee plants. Environmental and Experimental Botany 177, 104137. https://doi.org/10.1016/j.envexpbot.2020.104137 Google Scholar
Bardil, A., Almeida, J.D. de, Combes, M.C., Lashermes, P. and Bertrand, B. (2011). Genomic expression dominance in the natural allopolyploid Coffea arabica is massively affected by growth temperature. New Phytologist 192, 760774. https://doi.org/10.1111/j.1469-8137.2011.03833.x Google Scholar
Bezieux, H.R. de (2021). Ecume: Equality of 2 (or k) continuous univariate and multivariate distributions. R package version 0.9.1. https://CRAN.R-project.org/package=Ecume Google Scholar
Bote, A.D. and Struik, P.C. (2011). Effects of shade on growth, production and quality of coffee (Coffea arabica) in Ethiopia. Journal of Horticulture and Forestry 3, 336341. https://doi.org/10.5897/JHF.9000045 Google Scholar
Bote, A.D. and Vos, J. (2016). Branch growth dynamics, photosynthesis, yield and bean size distribution in response to fruit load manipulation in coffee trees. Trees 30, 12751285. https://doi.org/10.1007/s00468-016-1365-x Google Scholar
Camargo, A.P. and Camargo, M.B.P. (2001). Definição e esquematização das fases fenológicas do cafeeiro arábica nas condições tropicais do Brasil. Bragantia 60, 6568. https://doi.org/10.1590/S0006-87052001000100008 Google Scholar
Campa, C., Urban, L., Mondolot, L., Fabre, D., Roques, S., Lizzi, Y., Aarrouf, J., Doulbeau, S., Breitler, J.-C., Letrez, C., Toniutti, L., Bertrand, B., La Fisca, P., Bidel, L.P.R. and Etienne, H. (2017). Juvenile coffee leaves acclimated to low light are unable to cope with a moderate light increase. Frontiers in Plant Science 8, 1126. https://doi.org/10.3389/fpls.2017.01126 Google Scholar
Campbell, G.S. (1990). Derivation of an angle density-function for canopies with ellipsoidal leaf angle distributions. Agricultural and Forest Meteorology 49, 173176. https://doi.org/10.1016/0168-1923(90)90030 Google Scholar
Cassamo, C.T., Mangueze, A.V.J., Leitão, A.E., Pais, I.P., Moreira, R., Campa, C., Chiulele, R., Reis, F.O., Marques, I., Scotti-Campos, P., Lidon, F.C., Partelli, F.L., Ribeiro-Barros, A.I. and Ramalho, J.C. (2022). Shade and altitude implications on the physical and chemical attributes of green coffee beans from Gorongosa Mountain, Mozambique. Agronomy 12, 2540. https://doi.org/10.3390/agronomy12102540 Google Scholar
Castillo, E., Arcila, J., Jaramillo, A. and Sanabria, R.J. (1996). Estructura del dosel e interceptación de la radiación solar en café Coffea arabica L., var. Colombia. Cenicafé 47, 515. Available at: https://www.cenicafe.org/es/publications/arc047%2801%29005-015.pdf Google Scholar
Cesanelli, A. and Guarracino, L. (2011). Numerical modeling of actual evapotranspiration of a coffee crop. Scientia Agricola 68, 395399. https://doi.org/10.1590/S0103-90162011000400001 Google Scholar
Chemura, A. (2014). The growth response of coffee (Coffea arabica L.) plants to organic manure, inorganic fertilizers and integrated soil fertility management under different irrigation water supply levels. International Journal of Recycling of Organic Waste in Agriculture 3, 59. https://doi.org/10.1007/s40093-014-0059-x Google Scholar
DaMatta, F.M. and Ramalho, J.C. (2006). Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology 18, 5581. https://doi.org/10.1590/S1677-04202006000100006 Google Scholar
Davis, A.P., Chadburn, H., Moat, J., O’Sullivan, R., Hargreaves, S. and Lughadha, E.N. (2019). High extinction risk for wild coffee species and implications for coffee sector sustainability. Science Advances 5, eaav3473. https://doi.org/10.1126/sciadv.aav3473 Google Scholar
Davis, A.P., Challa, Z.K., Williams, J., Baena, S., Gole, T. W. and Moat, J. (2018). Coffee Atlas of Ethiopia. Kew, UK: Royal Botanic Gardens. Available at https://www.researchgate.net/publication/317898089_Coffee_Atlas_of_Ethiopia.Google Scholar
Davis, A.P., Govaerts, R., Bridson, D.M. and Stoffelen, P. (2006). An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society 152, 465512. https://doi.org/10.1111/j.1095-8339.2006.00584.x Google Scholar
Davis, A.P. and Rakotonasolo, F. (2021). Six new species of coffee (Coffea) from northern Madagascar. Kew Bulletin 76, 497511. https://doi.org/10.1007/s12225-021-09952-5 Google Scholar
Dias, P.C., Araujo, W.L., Moraes, G.A.B.K., Barros, R.S. and DaMatta, F.M. (2007). Morphological and physiological responses of two coffee progenies to soil water availability. Journal of Plant Physiology 164, 16391647. https://doi.org/10.1016/j.jplph.2006.12.004 Google Scholar
Duan, X., Jia, Z., Li, J. and Wu, S. (2022). The influencing factors of leaf functional traits variation of Pinus densiflora Sieb. et Zucc. Global Ecology and Conservation 38, e02177. https://doi.org/10.1016/j.gecco.2022.e02177 Google Scholar
Falster, D.S. and Westoby, M. (2003). Leaf size and angle vary widely across species: what consequences for light interception? New Phytologist 158, 509525. https://doi.org/10.1046/j.1469-8137.2003.00765.x CrossRefGoogle ScholarPubMed
Geeraert, L., Berecha, G., Honnay, O. and Aerts, R. (2019). Organoleptic quality of Ethiopian Arabica coffee deteriorates with increasing intensity of coffee forest management. Journal of Environmental Management 231, 282288. https://doi.org/10.1016/j.jenvman.2018.10.037 CrossRefGoogle ScholarPubMed
Godin, C. and Caraglio, Y. (1998). A multiscale model of plant topological structures. Journal of Theoretical Biology 191, 146. https://doi.org/10.1006/jtbi.1997.056 Google Scholar
Goudriaan, J. (1988). The bare bones of leafangle distribution in radiation models for canopy photosynthesis and energy exchange. Agricultural and Forest Meteorology 43, 155169. https://doi.org/10.1016/0168-1923(88)90089-5 Google Scholar
Guerreiro-Filho, O., Ramalho, M.A.P. and Andrade, V.T. (2018). Alcides Carvalho and the selection of Catuaí cultivar: interpreting the past and drawing lessons for the future. Crop Breeding and Applied Biotechnology 18, 460466. https://doi.org/10.1590/1984-70332018v18n4p69 Google Scholar
Hallé, F., Oldeman, R.A.A. and Tomlinson, P.B. (1978). Tropical trees and forests – An Architectural Analysis. Berlin: Springer–Verlag, 441 p. https://doi.org/10.1007/978-3-642-81190-6 Google Scholar
Harrell, F.E. Jr. (2023). Hmisc: Harrell miscellaneous. R package version 4.8-0. Available at https://CRAN.R-project.org/package=Hmisc Google Scholar
Leroy, T., Ribeyre, F., Bertrand, B., Charmetant, P., Dufour, M., Montagnon, C., Marraccini, P. and Pot, D. (2006). Genetics of coffee quality. Brazilian Journal of Plant Physiology 18, 229242. https://doi.org/10.1590/S1677-04202006000100016 Google Scholar
Ma, L., Zheng, G., Eitel, J.U.H., Magney, T.S., and Moskal, L.M. (2017). Retrieving forest canopy extinction coefficient from terrestrial and airborne LIDAR. Agricultural and Forest Meteorology 236, 121. https://doi.org/10.1016/j.agrformet.2017.01.004 Google Scholar
Majerowicz, N. and Sondahl, M.R. (2005). Induction and differentiation of reproductive buds in Coffea arabica L. Brazilian Journal Plant Physiology 17, 247254. https://doi.org/10.1590/S1677-04202005000200008 Google Scholar
Marin, F., Angelocci, L., Righi, E. and Sentelhas, P. (2005). Evapotranspiration and irrigation requirements of a coffee plantation in Southern Brazil. Experimental Agriculture 41, 187197. https://doi.org/10.1017/S0014479704002480 Google Scholar
Matsunaga, F.T., Tosti, J.B., Androcioli-Filho, A., Brancher, J.D., Costes, E. and Rakocevic, M. (2016). Strategies to reconstruct 3D Coffea arabica L. plant structure. SpringerPlus 5, 2075. https://doi.org/10.1186/s40064-016-3762-4 Google Scholar
Meireles, E.J.L, Camargo, M.B.P., Pezzopane, J.R.M., Thomaziello, R.A., Fahl, J.I., Bardin, L., Santos, J.C.F., Japiassú, L.B., Garcia, A.W.R., Miguel, A.E. and Ferreira, R.A. (2009). Fenologia do cafeeiro: condições agrometeorológicas e balanço hídrico do ano agrícola 2004–2005. Brasíla, Brazil: Embrapa Informação Tecnológica, p. 128. Available at https://ainfo.cnptia.embrapa.br/digital/bitstream/item/29356/1/Fenologia-do-cafeeiro.pdf.Google Scholar
Menezes-Silva, P.E., Sanglard, L.M.V.P., Ávila, R.T., Morais, L.E., Martins, S.C.V., Nobres, P., Patreze, C.M., Ferreira, M.A., Araújo, W.L., Fernie, A.R. and DaMatta, F.M. (2017). Photosynthetic and metabolic acclimation to repeated drought events play key roles in drought tolerance in coffee. Journal of Experimental Botany 68, 43094322. https://doi.org/10.1093/jxb/erx211 Google Scholar
Monahan, J. (2011). Numerical methods of statistics. In Cambridge Series in Statistical and Probabilistic Mathematics (2nd ed.). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511977176 Google Scholar
Muñoz-Villers, L.E., Geris, J., Alvarado-Barrientos, M.S., Holwerda, F. and Dawson, T. (2020). Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem. Hydrology and Earth System Sciences 24, 16491668. https://doi.org/10.5194/hess-24-1649-2020 Google Scholar
Niinemets, U. (2010). A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research 25, 693714. https://doi.org/10.1007/s11284-010-0712-4 Google Scholar
Nunes, A.L.P., Cortez, G.L.S., Zaro, G.C., Zorzenoni, T.O., Melo, T.R., Figueiredo, A., Aquino, G.S., Medina, C.C., Ralisch, R., Caramori, P.H. and Guimarães, M.F. (2021). Soil morphostructural characterization and coffee root distribution under agroforestry system with Hevea brasiliensis. Scientia Agricola 78, e20190150. http://doi.org/10.1590/1678-992X-2019-0150 Google Scholar
Oktavia, D. and Jin, G. (2020). Variations in leaf morphological and chemical traits in response to life stages, plant functional types, and habitat types in an old-growth temperate forest. Basic and Applied Ecology 49, 2233. https://doi.org/10.1016/j.baae.2020.09.010 Google Scholar
Pérez-Molina, J.P., Picoli, E.A.T., Oliveira, L.A., Silva, B.T., Souza, G.A., Rufino, J.L.S., Pereira, A.A., Ribeiro, M.F., Malvicini, G.L., Turello, L., D́Alessandro, S.C., Sakiyama, N.S. and Ferreira, W.P.M. (2021). Treasured exceptions: association of morphoanatomical leaf traits with cup quality of Coffea arabica L. cv. “Catuaí”. Food Research International 141, 110118. https://doi.org/10.1016/j.foodres.2021.110118 Google Scholar
Pompelli, M.F., Pompelli, G.M., Cabrini, E.C., Alves, M.C.J.L. and Ventrella, M.C. (2012). Leaf anatomy, ultrastructure and plasticity of Coffea arabica L. in response to light and nitrogen. Biotemas 25, 1328. https://doi.org/10.5007/2175-7925.2012v25n4p13 Google Scholar
Poorter, L. and Bongers, F. (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87(7), 17331743. https://doi.org/10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2 Google Scholar
Pradal, C., Boudon, F., Nouguier, C., Chopard, J. and Godin, C. (2009). PlantGL: a Python-based geometric library for 3D plant modelling at different scales. Graphical Models 71, 121. https://doi.org/10.1016/j.gmod.2008.10.001 CrossRefGoogle Scholar
Rakocevic, M. and Androcioli-Filho, A. (2010). Morphophysiological characteristics of Coffea arabica L. in different arrangements: lessons from a 3D virtual plant approach. Coffee Science 5, 54166. Available at https://coffeescience.ufla.br/index.php/Coffeescience/article/view/117 Google Scholar
Rakocevic, M., Batista, E.R., Pazianotto, R.A.A., Scholz, M.B.S., Souza, G.A.R., Campostrini, E. and Ramalho, J.C. (2021a). Leaf gas exchange and bean quality fluctuations over the whole canopy vertical profile of Arabic coffee cultivated under elevated CO2 . Functional Plant Biology 48, 469482. https://doi.org/10.1071/FP20298 Google Scholar
Rakocevic, M., Braga, K.S.M., Batista, E.R., Maia, A.H.N., Scholz, M.B.S. and Filizola, H.F. (2020). The vegetative growth assists to reproductive responses of Arabic coffee trees in a long-term FACE experiment. Plant Growth Regulation 91, 305316. https://doi.org/10.1007/s10725-020-00607-2 Google Scholar
Rakocevic, M., dos Santos Scholz, M.B., Pazianotto, R.A.A., Matsunaga, F.T. and Ramalho, J.C. (2023). Variation in yield, berry distribution and chemical attributes of Coffea arabica beans among the canopy strata of four genotypes cultivated under contrasted water regimes. Horticulturae 9, 215. https://doi.org/10.3390/horticulturae9020215 Google Scholar
Rakocevic, M. and Matsunaga, F.T. (2018). Variations in leaf growth parameters within the tree structure of adult Coffea arabica in relation to seasonal growth, water availability and air carbon dioxide concentration. Annals of Botany 122, 117131. https://doi.org/10.1093/aob/mcy042 Google Scholar
Rakocevic, M., Matsunaga, F.T., Baroni, D.F., Campostrini, E. and Costes, E. (2021b). Multiscale analyses of growth and berry distributions along four branching orders and vertical profile of Coffea arabica L. cultivated under high-density planting systems. Scientia Horticulturae 281, 109934. https://doi.org/10.1016/j.scienta.2021.109934 Google Scholar
Rakocevic, M., Ribeiro, R.V., Marchiori, P.E.R., Filizola, H.F. and Batista, E.R. (2018b). Structural and functional changes in coffee trees after 4 years under free air CO2 enrichment. Annals of Botany 21, 10651078. https://doi.org/10.1093/aob/mcy011 Google Scholar
Rakocevic, M., Scholz, M.B.S. and Kitzberger, C.S.G. (2018a). Berry distributions on coffee trees cultivated under high densities modulate the chemical composition of respective coffee beans during one biannual cycle. International Journal of Fruit Science 18, 117137. https://doi.org/10.1080/15538362.2017.1422448 Google Scholar
R Core Team (2022). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at https://www.R-project.org Google Scholar
Richardson, D., Kath, J., Byrareddy, V.M., Monselesan, D.P., Risbey, J.S., Squire, D.T. and Tozer, T.C. (2023). Synchronous climate hazards pose an increasing challenge to global coffee production. PLOS Climate 2, e0000134. https://doi.org/10.1371/journal.pclm.0000134 Google Scholar
Rolim, G.S., Sentelhas, P.C. and Barbieri, V. (1998). Planilhas no ambiente EXCEL TM para os cálculos de balanços hídricos: normal, sequencial, de cultura e de produtividade real e potencial. Revista Brasileira de Agrometeorologia 6, 133137.Google Scholar
Scholz, M.B.S., Kitzberger, C.S.G., Durand, N. and Rakocevic, M. (2018). From the field to coffee cup: impact of planting design on chlorogenic acid isomers and other compounds in coffee beans and sensory attributes of coffee beverage. European Food Research and Technology 244, 7931802. https://doi.org/10.1007/s00217-018-3091-7 Google Scholar
Sievänen, R., Godin, C., DeJong, D.T. and Nikinmaa, E. (2014). Functional-structural plant models: a growing paradigm for plant studies. Annals of Botany 114, 599603. https://doi.org/10.1093/aob/mcu175 Google Scholar
Silva, P.C. da, Junior, W.Q.R., Ramos, M.L.G., Rocha, O.C., Veiga, A.D., Silva, N.H., Brasileiro, L.de O., Santana, C.C., Soares, G.F., Malaquias, J.V. and Vinson, C.C. (2022). Physiological changes of Arabica coffee under different intensities and durations of water stress in the Brazilian Cerrado. Plants 11, 2198. https://doi.org/10.3390/plants11172198 Google Scholar
Souza, A.J.J., Guimarães, R.J., Colombo, A., Sant’Ana, J.A.V. and Castanheira, D.T. (2016). Quantitative analysis of growth in coffee plants cultivated with a water-retaining polymer in an irrigated system. Revista Ciência Agronômica 47, 162171.Google Scholar
Triki, H.E.M., Ribeyre, F., Pinard, F. and Jaeger, M. (2023).Coupling plant growth models and pest and disease models: an interaction structure proposal, MIMIC. Plant Phenomics 5, 0077. https://doi.org/10.34133/plantphenomics.0077 CrossRefGoogle ScholarPubMed
Unigarro-Muñoz, C.A., Jaramillo, A.R. and Flórez, C.P.R. (2017). Evaluation of six leaf angle distribution functions in the Castillo® coffee variety. Agronomía Colombiana 35, 2328. https://doi.org/10.15446/agron.colomb.v35n1.60063 Google Scholar
Unigarro-Muñoz, C.A., Jaramillo, A.R., Ibarra, L.N.R. and Flórez, C.P.R. (2016). Estructura del dosel y coeficientes de extinción teóricos en genotipos de café arábico en Colombia. Acta Agronómica 65, 383389. https://doi.org/10.15446/acag.v65n4.51899 Google Scholar
Unigarro-Muñoz, C.A., Trejos Pinzón, J. F. and Acuña-Zornosa, J. R. (2021). Estructura y distribución lumínica en el dosel de dos progenies de café con ángulos foliares diferentes. Revista Cenicafé 72, e72104. https://doi.org/10.38141/10778/72104 Google Scholar
Vaast, P., Dauzat, J. and Génard, M. (2002). Modeling the effects of fruit load, shade and plant water status on coffee berry growth and carbon partitioning at the branch level. Acta Horticulturae 584, 5762. https://doi.org/10.17660/actahortic.2002.584 Google Scholar
Vogel, A., Manning, P., Cadotte, M.W., Cowles, J., Isbell, F., Jousset, A.L.C., Kimmel, K., Meyer, S.T., Reich, P.B., Roscher, C., Scherer-Lorenzen, M., Tilman, D., Weigelt, A., Wright, A.J., Eisenhauer, N. and Wagg, C. (2019). Lost in trait space: species-poor communities are inflexible in properties that drive ecosystem functioning. Advances in Ecological Research 61, 91131. https://doi.org/10.1016/bs.aecr.2019.06.002 Google Scholar
Vu, N.T., Park, J.M., Tran, A.T., Bui, T.K, Vu, D.C., Jang, D.C. and Kim, I.S. (2018). Effect of water stress on the growth and physiology of coffee plants. Journal of Agricultural, Life and Environmental Sciences 30, 121130. https://doi.org/10.22698/jales.20180014 Google Scholar
Werner, C., Correia, O. and Beyschlag, W. (1999). Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought. Acta Oecologica 20, 1523. https://doi.org/10.1016/S1146-609X(99)80011-3 Google Scholar
Yang, X., Li, R., Jablonski, A., Stovall, A., Kim, J., Yi, K., Ma, Y., Beverly, D., Phillips, R., Novick, K., Xu, X. and Lerdau, M. (2023). Leaf angle as a leaf and canopy trait: rejuvenating its role in ecology with new technology. Ecology Letters 26, 10051020. https://doi.org/10.1111/ele.14215 Google Scholar
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z. and Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae 7, 50. https://doi.org/10.3390/horticulturae7030050 Google Scholar
Supplementary material: File

Rakocevic et al. supplementary material

Rakocevic et al. supplementary material
Download Rakocevic et al. supplementary material(File)
File 2.8 MB