Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-10T18:01:50.239Z Has data issue: false hasContentIssue false

Niclosamide-Exfoliated Anionic Clay Nanohybrid Repurposed as an Antiviral Drug for Tackling Covid-19; Oral Formulation with Tween 60/Eudragit S100

Published online by Cambridge University Press:  01 January 2024

N. Sanoj Rejinold
Affiliation:
Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
Huiyan Piao
Affiliation:
Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
Goeun Choi
Affiliation:
Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea College of Science and Technology, Dankook University, Cheonan 31116, Korea Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
Geun-Woo Jin
Affiliation:
R&D Centre, CnPharm Co., LTD., Seoul 03759, Korea
Jin-Ho Choy*
Affiliation:
Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan 31116, Korea Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
*
*E-mail address of corresponding author: jhchoy@dankook.ac.kr

Abstract

The ongoing pandemic, COVID-19 (SARS-CoV-2), has afflicted millions of people around the world, necessitating that the scientific community work, diligently and promptly, on suitable medicaments. Although vaccination programs have been run globally, the new variants of COVID-19 make it difficult to restrict the spread of the virus by vaccination alone. The combination of vaccination with anti-viral drug formulation is an ideal strategy for tackling the current pandemic situation. Drugs approved by the United States Food and Drug Administration (FDA), such as Remdesivir, have been found to be of little or no benefit. On the other hand, re-purposing of FDA-approved drugs, such as niclosamide (NIC), has offered promise but its applicability is limited due to its poor aqueous solubility and, therefore, low bioavailability. With advanced nano-pharmaceutical approaches, re-purposing this drug in a suitable drug-carrier for a better outcome may be possible. In the current study, an attempt was made to explore the loading of NIC into exfoliated layered double hydroxide nanoparticles (X-LDH NPs); prepared NIC-X-LDH NPs were further modified with eudragit S100 (ES100), an enteric coating polymer, to make the final product, ES100-NIC-X-LDH NPs, to improve absorption by the gastro/intestinal tract (GIT). Furthermore, Tween 60 was added as a coating on ES100-NIC-X-LDH NPs, not just to enhance its in vitro and in vivo stability, but also to enhance its mucoadhesive property, and to obtain, ultimately, better in vivo pharmacokinetic (PK) parameters upon oral administration. Release of NIC from Tween 60-ES100-NIC-X-LDH NPs was found to be greater under gastro/intestinal solution within a shorter period of time than the uncoated samples. The in vivo analysis revealed that Tween 60-ES100-NIC-X-LDH NPs were able to maintain a therapeutically relevant NIC plasma concentration in terms of PK parameters compared to the commercially available Yomesan®, proving that the new formulation might prove to be an effective oral drug-delivery system to deal with the SARS-CoV-2 viral infections. Further studies are required to ensure their safety and anti-viral efficacy.

Type
Original Paper
Copyright
Copyright © The Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansy, K. M., Lee, J.-H., Piao, H., Choi, G., & Choy, J.-H. (2018). Stabilization of antioxidant gallate in layered double hydroxide by exfoliation and reassembling reaction. Solid State Sciences, 80, 6571. https://doi.org/10.1016/j.solidstatesciences.2018.04.001CrossRefGoogle Scholar
Belgheisi, G., Nazarpak, M. H., & Hashjin, M. S. (2020). Bone tissue engineering electrospun scaffolds based on layered double hydroxides with the ability to release vitamin D3: Fabrication, characterization and in vitro study. Applied Clay Science, 185, 105434. https://doi.org/10.1016/j.clay.2019.105434CrossRefGoogle Scholar
Choi, G., & Choy, J.-H. (2021). Recent progress in layered double hydroxides as a cancer theranostic nanoplat form. WIREs Nanomedicine and Nanobiotechnology, 13(2), e1679. https://doi.org/10.1002/wnan.1679CrossRefGoogle Scholar
Choi, G., Jeon, I.-R., Piao, H., & Choy, J.-H. (2018a). Highly condensed boron cage cluster anions in 2d carrier and its enhanced antitumor efficiency for boron neutron capture therapy. Advanced Functional Materials, 28(27), 1704470. https://doi.org/10.1002/adfm.201704470CrossRefGoogle Scholar
Choi, G., Kim, T.-H., Oh, J.-M., & Choy, J.-H. (2018b). Emerging nanomaterials with advanced drug delivery functions; focused on methotrexate delivery. Coordination Chemistry Reviews, 359, 3251. https://doi.org/10.1016/j.ccr.2018.01.007CrossRefGoogle Scholar
Choi, G., Piao, H., Rejinold, N. S., Yu, S., Kim, K.-Y., Jin, G.-W., & Choy, J.-H. (2021a). Hydrotalcite–niclosamide nanohybrid as oral formulation towards SARS-CoV-2 viral infections. Pharmaceuticals, 14(5). https://doi.org/10.3390/ph14050486CrossRefGoogle ScholarPubMed
Choi, G., Rejinold, N. S., Piao, H., & Choy, J.-H. (2021b). Inorganic– inorganic nanohybrids for drug delivery, imaging and photo-therapy: recent developments and future scope. Chemical Science, 12(14), 50445063. https://doi.org/10.1039/D0SC06724ECrossRefGoogle ScholarPubMed
De Leo, V., Di Gioia, S., Milano, F., Fini, P., Comparelli, R., Mancini, E., Agostiano, A., Conese, M., & Catucci, L. (2020). Eudragit S100 entrapped liposome for curcumin delivery: anti-oxidative effect in Caco-2 cells. Coatings, 10(2). https://doi.org/10.3390/coatings10020114CrossRefGoogle Scholar
Evans, D. F., Pye, G., Bramley, R., Clark, A. G., Dyson, T. J., & Hardcastle, J. D. (1988). Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut, 29(8), 1035. https://doi.org/10.1136/gut.29.8.1035CrossRefGoogle ScholarPubMed
Grifasi, F., Chierotti, M. R., Gaglioti, K., Gobetto, R., Maini, L., Braga, D., Dichiarante, E., & Curzi, M. (2015). Using salt cocrystals to improve the solubility of niclosamide. Crystal Growth & Design, 15(4), 19391948. https://doi.org/10.1021/acs.cgd.5b00106CrossRefGoogle Scholar
Hales, D., Tefas, L. R., Tomuta, I., Moldovan, C., Gulei, D., Munteanu, R., & Porfire, A. (2020). Development of a curcuminloaded polymeric microparticulate oral drug delivery system for colon targeting by quality-by-design approach. Pharmaceutics, 12(11), 1027. https://doi.org/10.3390/pharmaceutics12111027CrossRefGoogle ScholarPubMed
Hancock, B. C., & Parks, M. (2000). What is the true solubility advantage for amorphous pharmaceuticals? Pharmaceutical Research, 17(4), 397404. https://doi.org/10.1023/A:1007516718048CrossRefGoogle ScholarPubMed
Hatamipour, M., Jaafari, M. R., Momtazi-Borojeni, A. A., Ramezani, M., & Sahebkar, A. (2019). Nanoliposomal encapsulation enhances in vivo anti-tumor activity of niclosamide against melanoma. Anticancer Agents in Medicinal Chemistry, 19(13), 16181626. https://doi.org/10.2174/1871520619666190705120011CrossRefGoogle ScholarPubMed
Hu, J., Li, C., Wang, S., Li, T., & Zhang, H. (2020). Genetic variants are identified to increase risk of COVID-19 related mortality from UK Biobank data. medRxiv. https://doi.org/10.1101/2020.11.05.20226761CrossRefGoogle Scholar
Huang, M., Qiu, Q., Zeng, S., Xiao, Y., Shi, M., Zou, Y., Ye, Y., Liang, L., Yang, X., & Xu, H. (2015). Niclosamide inhibits the inflammatory and angiogenic activation of human umbilical vein endothelial cells. Inflammation Research, 64(12), 10231032. https://doi.org/10.1007/s00011-015-0888-8CrossRefGoogle ScholarPubMed
Jara, M. O., Warnken, Z. N., & Williams, R. O. III (2021). Amorphous solid dispersions and the contribution of nanoparticles to in vitro dissolution and in vivo testing: niclosamide as a Case Study. Pharmaceutics, 13(1). https://doi.org/10.3390/pharmaceutics13010097CrossRefGoogle ScholarPubMed
Jeon, S., Ko, M., Lee, J., Choi, I., Byun, S. Y., Park, S., Shum, D., & Kim, S. (2020). Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrobial Agents and Chemotherapy, 64(7), e00819e00820. https://doi.org/10.1128/AAC.00819-20CrossRefGoogle ScholarPubMed
Jin, W., & Park, D.-H. (2019). Functional Layered Double Hydroxide Nanohybrids for Biomedical Imaging. Nanomaterials (Basel, Switzerland), 9(10), 1404. https://doi.org/10.3390/nano9101404CrossRefGoogle ScholarPubMed
Kao, J. C., HuangFu, W. C., Tsai, T. T., Ho, M. R., Jhan, M. K., Shen, T. J., Tseng, P. C., Wang, Y. T., & Lin, C. F. (2018). The antiparasitic drug niclosamide inhibits dengue virus infection by interfering with endosomal acidification independent of mTOR. PLoS Neglected Tropical Diseases, 12(8), e0006715. https://doi.org/10.1371/journal.pntd.0006715CrossRefGoogle ScholarPubMed
Khan, M. Z. I., Stedul, H. P., & Kurjakovic, N. (2000). A pH-dependent colon-targeted oral drug delivery system using methacrylic acid copolymers. II. Manipulation of drug release using Eudragit (R) L100 and Eudragit S100 combinations. Drug Development and Industrial Pharmacy, 26(5), 549554. https://doi.org/10.1081/Ddc-100101266CrossRefGoogle Scholar
Koziolek, M., Grimm, M., Becker, D., Iordanov, V., Zou, H., Shimizu, J., Wanke, C., Garbacz, G., & Weitschies, W. (2015). Investigation of pH and temperature profiles in the gi tract of fasted human subjects using the intellicap® system. Journal of Pharmaceutical Sciences, 104(9), 28552863. https://doi.org/10.1002/jps.24274CrossRefGoogle ScholarPubMed
Li, S., Rui, L., Bekana, D., & Lai, Y. (2018). Self-assembly of supramolecular nanotubes/microtubes from 3,5-Dimethyl-4-iodopyrazole for plasmonic nanoparticle organization. Nanoscale, 10. https://doi.org/10.1039/C8NR07372DCrossRefGoogle Scholar
Li, M., Guo, X., & Wang, X. (2021). Retrospective prediction of the epidemic trend of COVID-19 in Wuhan at four phases. Journal of Medical Virology, https://doi.org/10.1002/jmv.26781CrossRefGoogle Scholar
Lodagekar, A., Borkar, R. M., Thatikonda, S., Chavan, R. B., Naidu, V. G. M., Shastri, N. R., Srinivas, R., & Chella, N. (2019). Formulation and evaluation of cyclodextrin complexes for improved anticancer activity of repurposed drug: Niclosamide. Carbohydrate Polymers, 212, 252259. https://doi.org/10.1016/j.carbpol.2019.02.041CrossRefGoogle ScholarPubMed
Ma, R., Liu, Z., Li, L., Iyi, N., & Sasaki, T. (2006). Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets. Journal of Materials Chemistry, 16(39), 38093813. https://doi.org/10.1039/B605422FCrossRefGoogle Scholar
Ma, R., Ma, Z.G., Gao, J. L., Tai, Y., Li, L.J., Zhu, H. B., Li, L., Dong, D. L., & Sun, Z. J. (2020). Injectable pegylated niclosamide (polyethylene glycol-modified niclosamide) for cancer therapy. Journal of Biomedical Materials Research A, 108(1), 3038. https://doi.org/10.1002/jbm.a.36788CrossRefGoogle ScholarPubMed
Mei, Q., Wang, F., Bryant, A., Wei, L., Yuan, X., & Li, J. (2021). Mental health problems among COVID-19 survivors in Wuhan, China. World Psychiatry, 20(1), 139140. https://doi.org/10.1002/wps.20829CrossRefGoogle ScholarPubMed
Otsuka, K., Shono, Y., & Dressman, J. (2013). Coupling biorelevant dissolution methods with physiologically based pharmacokinetic modelling to forecast in-vivo performance of solid oral dosage forms. Journal of Pharmacy and Pharmacology, 65, 937952. https://doi.org/10.1111/jphp.12059CrossRefGoogle ScholarPubMed
Pardhi, V., Chavan, R. B., Thipparaboina, R., Thatikonda, S., Naidu, V. G. M., & Shastri, N. R. (2017). Preparation, characterization, and cytotoxicity studies of niclosamide loaded mesoporous drug delivery systems. International Journal of Pharmaceutics, 528(1), 202214. https://doi.org/10.1016/j.ijpharm.2017.06.007CrossRefGoogle ScholarPubMed
Pindiprolu, S. K. S. S., & Pindiprolu, S. H. (2020). Plausible mechanisms of Niclosamide as an antiviral agent against COVID-19. Medical Hypotheses, 140, 109765109765. https://doi.org/10.1016/j.mehy.2020.109765CrossRefGoogle ScholarPubMed
Rehman, M. U., Khan, M. A., Khan, W. S., Shafique, M., & Khan, M. (2018). Fabrication of Niclosamide loaded solid lipid nanoparticles: in vitro characterization and comparative in vivo evaluation. Artificial Cells, Nanomedicine, and Biotechnology, 46(8), 19261934. https://doi.org/10.1080/21691401.2017.1396996Google ScholarPubMed
Rehman, S., Ranjha, N. M., Raza, M. R., Hanif, M., Majed, A., & Ameer, N. (2020). Enteric-coated Ca-alginate hydrogel beads: a promising tool for colon targeted drug delivery system. Polymer Bulletin. https://doi.org/10.1007/s00289-020-03359-1CrossRefGoogle Scholar
Rejinold, N. S., Choi, G., Piao, H., & Choy, J.-H. (2021). Bovine Serum Albumin-Coated Niclosamide-Zein Nanoparticles as Potential Injectable Medicine against COVID-19. Materials, 14(14). https://doi.org/10.3390/ma14143792CrossRefGoogle Scholar
Sideris, P. J., Nielsen, U. G., Gan, Z., & Grey, C. P. (2008). Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science, 321(5885), 113. https://doi.org/10.1126/science.1157581CrossRefGoogle ScholarPubMed
Vonnemann, J., Sieben, C., Wolff, C., Ludwig, K., Böttcher, C., Herrmann, A., & Haag, R. (2014). Virus inhibition induced by polyvalent nanoparticles of different sizes. Nanoscale, 6(4), 23532360. https://doi.org/10.1039/C3NR04449ACrossRefGoogle ScholarPubMed
Yamamoto, V., Bolanos, J. F., Fiallos, J., Strand, S. E., Morris, K., Shahrokhinia, S., Cushing, T. R., Hopp, L., Tiwari, A., Hariri, R., Sokolov, R., Wheeler, C., Kaushik, A., Elsayegh, A., Eliashiv, D., Hedrick, R., Jafari, B., Johnson, J. P., Khorsandi, M., et al. (2020). COVID-19: Review of a 21st century pandemic from etiology to neuro-psychiatric implications. Journal of Alzheimer's Disease, 77, 459504. https://doi.org/10.3233/JAD-200831CrossRefGoogle ScholarPubMed
Yan, L., Gonca, S., Zhu, G., Zhang, W., & Chen, X. (2019). Layered double hydroxide nanostructures and nanocomposites for biomedical applications. Journal of Materials Chemistry B, 7(37), 55835601. https://doi.org/10.1039/c9tb01312aCrossRefGoogle ScholarPubMed
Yang, Y. T., Xing, X., Sreekissoon, S., & Li, Z. (2021). Impact of transmission control measures on the epidemiology of maxillofacial injuries in Wuhan City during the COVID-19 epidemic. Journal of Craniofacial Surgery, Publish Ahead of Print. https://doi.org/10.1097/SCS.0000000000007427CrossRefGoogle Scholar
Yu, X., Liu, F., Zeng, L., He, F., Zhang, R., Yan, S., Zeng, Z., Shu, Y., Zhao, C., Wu, X., Lei, J., Zhang, W., Yang, C., Wu, K., Wu, Y., An, L., Huang, S., Ji, X., Gong, C., et al. (2018). Niclosamide Exhibits Potent Anticancer Activity and Synergizes with Sorafenib inHuman Renal Cell Cancer Cells. Cellular Physiology and Biochemistry, 47(3), 957971. https://doi.org/10.1159/000490140CrossRefGoogle Scholar
Yu, S., Piao, H., Rejinold, N. S., Jin, G., Choi, G., & Choy, J.-H. (2021). Niclosamide–Clay Intercalate Coated with Nonionic Polymer for Enhanced Bioavailability toward COVID-19 Treatment. Polymers, 13(7). https://doi.org/10.3390/polym13071044CrossRefGoogle ScholarPubMed
Zhang, X., Zhang, Y., Zhang, T., Zhang, J., & Wu, B. (2015). Significantly enhanced bioavailability of niclosamide through submicron lipid emulsions with or without PEG-lipid: a comparative study. Journal of Microencapsulation, 32(5), 496502. https://doi.org/10.3109/02652048.2015.1057251CrossRefGoogle ScholarPubMed
Zhu, G., Zhu, Y., Wang, Z., Meng, W., Wang, X., Feng, J., Li, J., Xiao, Y., Shi, F., & Wang, S. (2021). The association between ambient temperature and mortality of the coronavirus disease 2019 (COVID-19) in Wuhan, China: a time-series analysis. BMC Public Health, 21(1), 117. https://doi.org/10.1186/s12889-020-10131-7CrossRefGoogle Scholar
Supplementary material: File

Rejinold et al. supplementary material
Download undefined(File)
File 2.1 MB