Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T00:19:09.530Z Has data issue: false hasContentIssue false

Halloysite-Based Nanosystems for Biomedical Applications

Published online by Cambridge University Press:  01 January 2024

Francesca Persano
Affiliation:
Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100, Lecce, Apulia, Italy CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100, Lecce, Apulia, Italy
Giuseppe Gigli
Affiliation:
Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100, Lecce, Apulia, Italy CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100, Lecce, Apulia, Italy
Stefano Leporatti*
Affiliation:
CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100, Lecce, Apulia, Italy
*
*E-mail address of corresponding author: stefano.leporatti@nanotec.cnr.it

Abstract

Halloysite nanotubes (HNTs) are hollow clay nanotubes in the nanometer size range, made up of double-layered aluminum silicate mineral layers. HNTs represent an extremely versatile, safe, and biocompatible nanomaterial, used in a wide range of applications in biomedicine and nanomedicine. For example, they are used as transporters for the controlled release of drugs or genes, in tissue engineering, in the isolation of stem cells and cancer cells, and in bioimaging. Consequently, the assessment of the biocompatibility of HNTs has acquired considerable importance. In recent years, HNT composites have attracted attention due to their improved biocompatibility, compared to HNTs, suggesting potential for applications in tissue engineering or as vehicles for drugs or genes. In this review, recent advances in the application of HNTs and HNT composites in biomedicine are discussed to provide a valuable guide to scientists in the design and development of viable, functional bio-devices for biomedical applications.

Type
Review
Copyright
Copyright © The Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullayev, E., Price, R., Shchukin, D., & Lvov, Y. (2009). Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Applied Materials & Interfaces, 1, 14371443.CrossRefGoogle ScholarPubMed
Abdullayev, E., & Lvov, Y. (2011). Halloysite clay nanotubes for controlled release of protective agents. Journal of Nanoscience and Nanotechnology, 11, 1000710026.CrossRefGoogle ScholarPubMed
Alkatheeri, M. S., Palasuk, J., Eckert, G. J., Platt, J. A., & Bottino, M. C. (2015). Halloysite nanotube incorporation into adhesive systems–Effect on bond strength to human dentin. Clinical Oral Investigations, 19, 19051912.CrossRefGoogle ScholarPubMed
Andreou, C., Pal, S., Rotter, L., Yang, J., & Kircher, M. F. (2017). Molecular imaging in nanotechnology and theranostics. Molecular Imaging and Biology, 19, 363372.CrossRefGoogle Scholar
Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2020). The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules, 25, 112.CrossRefGoogle Scholar
Bediako, E. G., Nyankson, E., Dodoo-Arhin, D., Agyei-Tuffour, B., Łukowiec, D., Tomiczek, B., Yaya, A., & Efavi, J. K. (2018). Modified halloysite nanoclay as a vehicle for sustained drug delivery. Heliyon, 4, e00689.CrossRefGoogle ScholarPubMed
Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M. A., Alkawareek, M. Y., Dreaden, E. C., Brown, D., Alkilany, A. M., Farokhzad, O. C., & Mahmoudi, M. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 46, 42184244.CrossRefGoogle ScholarPubMed
Berton, F., Porrelli, D., Di Lenarda, R., & Turco, G. (2020). A critical review on the production of electrospun nanofibres for guided bone regeneration in oral surgery. Nanomaterials, 10, 16.CrossRefGoogle Scholar
Bonifacio, M. A., Gentile, P., Ferreira, A. M., Cometa, S., & De Giglio, E. (2017). Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohydrate Polymers, 163, 280291.CrossRefGoogle ScholarPubMed
Bretti, C., Cataldo, S., Gianguzza, A., Lando, G., Lazzara, G., Pettignano, A., & Sammartano, S. (2016). Thermodynamics of proton binding of halloysite nanotubes. The Journal of Physical Chemistry C, 120, 78497859.CrossRefGoogle Scholar
Can, M., Demirci, S., Yildrim, Y., Çoban, C. Ç., Turk, M., & Sahiner, N. (2021). Modification of halloysite clay nanotubes with various alkyl halides, and their characterization, blood compatibility, biocompatibility, and genotoxicity. Materials Chemistry and Physics, 259, 124013.CrossRefGoogle Scholar
Cavallaro, G., Lazzara, G., Massaro, M., Milioto, S., Noto, R., Parisi, F., & Riela, S. (2015). Biocompatible poly (Nisopropylacrylamide)-halloysite nanotubes for thermoresponsive curcumin release. The Journal of Physical Chemistry C, 119, 89448951.CrossRefGoogle Scholar
Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal, 17, 467479.CrossRefGoogle ScholarPubMed
Chen, S., Yang, Z., & Wang, F. (2018). Investigation on the properties of PMMA/reactive Halloysite nanocomposites based on halloysite with double bonds. Polymers, 10, 919.CrossRefGoogle ScholarPubMed
Cheng, C., Song, W., Zhao, Q., & Zhang, H. (2020). Halloysite nanotubes in polymer science: Purification, characterization, modification and applications. Nanotechnology Reviews, 9, 323344.CrossRefGoogle Scholar
Cho, K., Yasir, M., Jung, M., Willcox, M.D. F., Stenzel, M.H., Rajan, G., Farrar, P., & Prusty, B. G. (2020). Hybrid engineered dental composites by multiscale reinforcements with chitosan-integrated halloysite nanotubes and S-glass fibers. Composites Part B: Engineering, 202, 108448.CrossRefGoogle Scholar
Christensen, C. L., Ashmead, R. E., & Choy, F. Y. (2019). Cell and gene therapies for mucopolysaccharidoses: base editing and therapeutic delivery to the CNS. Diseases, 7, 47.CrossRefGoogle ScholarPubMed
Daou, I., Lecomte-Nana, G. L., Tessier-Doyen, N., Peyratout, C., Gonon, M. F., & Guinebretiere, R. (2020). Probing the dehydroxylation of kaolinite and halloysite by in situ high temperature X-ray diffraction. Minerals, 10, 480.CrossRefGoogle Scholar
De Silva, R. T., Dissanayake, R. K., Mantilaka, M. P. G., Wijesinghe, W. S. L., Kaleel, S. S., Premachandra, T. N., Weerasinghe, L., Amaratunga, G. A. J., & de Silva, K. N. (2018). Drug-loaded halloysite nanotube-reinforced electrospun alginate-based nanofibrous scaffolds with sustained antimicrobial protection. ACS Applied Materials & Interfaces, 10, 3391333922.CrossRefGoogle ScholarPubMed
Dionisi, C., Hanafy, N., Nobile, C., De Giorgi, M. L., Rinaldi, R., Casciaro, S., Lvov, Y. M., & Leporatti, S. (2016). Halloysite clay nanotubes as carriers for curcumin: characterization and application. IEEE Transactions on Nanotechnology, 15, 720724.CrossRefGoogle Scholar
Dramou, P., Fizir, M., Taleb, A., Itatahine, A., Dahiru, N. S., Mehdi, Y. A., Wei, L., Zhang, J., & He, H. (2018). Folic acid-conjugated chitosan oligosaccharide-magnetic halloysite nanotubes as a delivery system for camptothecin. Carbohydrate Polymers, 197, 117127.CrossRefGoogle ScholarPubMed
Du, M., Guo, B., & Jia, D. (2010). Newly emerging applications of halloysite nanotubes: a review. Polymer International, 59, 574582.CrossRefGoogle Scholar
Fakhrullina, G. I., Akhatova, F. S., Lvov, Y. M., & Fakhrullin, R. F. (2015). Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study. Environmental Science: Nano, 2, 5459.CrossRefGoogle Scholar
Fakhrullina, G., Khakimova, E., Akhatova, F., Lazzara, G., Parisi, F., & Fakhrullin, R. (2019). Selective antimicrobial effects of curcumin@halloysite nanoformulation: A Caenorhabditis elegans study. ACS Applied Materials & Interfaces, 11, 2305023064.CrossRefGoogle Scholar
Fan, L., Zhang, J., & Wang, A. (2013). In situ generation of sodium alginate/hydroxyapatite/halloysite nanotubes nanocomposite hydrogel beads as drug-controlled release matrices. Journal of Materials Chemistry B, 1, 62616270.CrossRefGoogle ScholarPubMed
Grieshaber, D., MacKenzie, R., Vörös, J., & Reimhult, E. (2008). Electrochemical biosensors-sensor principles and architectures. Sensors, 8, 14001458.CrossRefGoogle ScholarPubMed
Guo, M., Wang, A., Muhammad, F., Qi, W., Ren, H., Guo, Y., & Zhu, G. (2012). Halloysite nanotubes, a multifunctional nanovehicle for anticancer drug delivery. Chinese Journal of Chemistry, 30, 21152120.CrossRefGoogle Scholar
Hanif, M., Jabbar, F., Sharif, S., Abbas, G., Farooq, A., & Aziz, M. (2016). Halloysite nanotubes as a new drug-delivery system: a review. Clay Minerals, 51, 469477.CrossRefGoogle Scholar
He, R., Liu, M., Shen, Y., Liang, R., Liu, W., & Zhou, C. (2018). Simple fabrication of rough halloysite nanotubes coatings by thermal spraying for high performance tumor cells capture. Materials Science and Engineering: C, 85, 170181.CrossRefGoogle Scholar
Hillier, S., Brydson, R., Delbos, E., Fraser, T., Gray, N., Pendlowski, H., Phillips, I., Robertson, J., & Wilson, I. (2016). Correlations among the mineralogical and physical properties of halloysite nanotubes (HNTs). Clay Minerals, 51, 325350.CrossRefGoogle Scholar
Homayun, B., & Choi, H. J. (2020). Halloysite nanotube-embedded microparticles for intestine-targeted co-delivery of biopharmaceuticals. International Journal of Pharmaceutics, 579, 119152.CrossRefGoogle ScholarPubMed
Hou, B., & Wu, J. (2020). Halloysite nanotubes (HNTs)@ ZIF-67 composites – a new type of heterogeneous catalyst for the Knoevenagel condensation reaction. Dalton Transactions, 49, 1762117628.CrossRefGoogle ScholarPubMed
Hu, Y., Chen, J., Li, X., Sun, Y., Huang, S., Li, Y., Liu, H., Xu, J., & Zhong, S. (2017). Multifunctional halloysite nanotubes for targeted delivery and controlled release of doxorubicin in-vitro and in-vivo studies. Nanotechnology, 28, 375101.CrossRefGoogle ScholarPubMed
Huang, B., Liu, M., & Zhou, C. (2017). Chitosan composite hydrogels reinforced with natural clay nanotubes. Carbohydrate Polymers, 175, 689698.CrossRefGoogle ScholarPubMed
Huffer, S., Clark, M. E., Ning, J. C., Blanch, H. W., & Clark, D. S. (2011). Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria, and archaea. Applied and Environmental Microbiology, 77, 64006408.CrossRefGoogle ScholarPubMed
Jawaid, M., Qaiss, A., & Bouhfid, R. (Eds.). (2016). Nanoclay Reinforced Polymer Composites. Springer.CrossRefGoogle Scholar
Jin, J., Fu, L., Yang, H., & Ouyang, J. (2015). Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities. Scientific Reports, 5, 110.CrossRefGoogle Scholar
Joo, Y., Sim, J. H., Jeon, Y., Lee, S. U., & Sohn, D. (2013). Opening and blocking the inner-pores of halloysite. Chemical Communications, 49, 45194521.CrossRefGoogle ScholarPubMed
Joshi, A., Abdullayev, E., Vasiliev, A., Volkova, O., & Lvov, Y. (2013). Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors. Langmuir, 29, 74397448.CrossRefGoogle ScholarPubMed
Kamalieva, R. F., Ishmukhametov, I.R., Batasheva, S. N., Rozhina, E. V., & Fakhrullin, R. F. (2018). Uptake of halloysite clay nanotubes by human cells: Colourimetric viability tests and microscopy study. Nano-Structures & Nano-Objects, 15, 5460.CrossRefGoogle Scholar
Katana, B., Takács, D., Csapó, E., Szabó, T., Jamnik, A., & Szilagyi, I. (2020). Ion specific effects on the stability of halloysite nanotube colloids–inorganic salts versus ionic liquids. The Journal of Physical Chemistry B, 124, 97579765.CrossRefGoogle ScholarPubMed
Khatoon, N., Chu, M. Q., & Zhou, C. H. (2020). Nanoclay-based drug delivery systems and their therapeutic potentials. Journal of Materials Chemistry B, 8, 73357351.CrossRefGoogle ScholarPubMed
Khodzhaeva, V., Makeeva, A., Ulyanova, V., Zelenikhin, P., Evtugyn, V., Hardt, M., Rozhina, E., Lvov, Y., Fakhrullin, R., & Ilinskaya, O. (2017). Binase immobilized on halloysite nanotubes exerts enhanced cytotoxicity toward human colon adenocarcinoma cells. Frontiers in Pharmacology, 8, 631.CrossRefGoogle ScholarPubMed
Kryuchkova, M., Danilushkina, A., Lvov, Y., & Fakhrullin, R. (2016). Evaluation of toxicity of nanoclays and graphene oxide in vivo: a Paramecium caudatum study. Environmental Science: Nano, 3, 442452.Google Scholar
Kumar, A., Mazinder Boruah, B., & Liang, X. J. (2011). Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS. Journal of Nanomaterials. https://doi.org/10.1155/2011/202187.CrossRefGoogle Scholar
Kurczewska, J., Pecyna, P., Ratajczak, M., Gajęcka, M., & Schroeder, G. (2017). Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing. Saudi Pharmaceutical Journal, 25, 911920.CrossRefGoogle ScholarPubMed
Kurczewska, J., Cegłowski, M., Messyasz, B., & Schroeder, G. (2018). Dendrimer-functionalized halloysite nanotubes for effective drug delivery. Applied Clay Science, 153, 134143.CrossRefGoogle Scholar
Lai, X., Agarwal, M., Lvov, Y. M., Pachpande, C., Varahramyan, K., & Witzmann, F. A. (2013). Proteomic profiling of halloysite clay nanotube exposure in intestinal cell co-culture. Journal of Applied Toxicology, 33, 13161329.CrossRefGoogle ScholarPubMed
Lepoittevin, B., Devalckenaere, M., Pantoustier, N., Alexandre, M., Kubies, D., Calberg, C., Jérôme, R., & Dubois, P. (2002). Poly (ε-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer, 43, 40174023.CrossRefGoogle Scholar
Li, X., Ouyang, J., Yang, H., & Chang, S. (2016). Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Applied Clay Science, 126, 306312.CrossRefGoogle Scholar
Li, W., Liu, D., Zhang, H., Correia, A., Mäkilä, E., Salonen, J., Hirvonen, J., & Santos, H. A. (2017a). Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomaterialia, 48, 238246.CrossRefGoogle Scholar
Li, Y., Khan, M. S., Tian, L., Liu, L., Hu, L., Fan, D., Cao, W., & Wei, Q. (2017b). An ultrasensitive electrochemical immunosensor for the detection of prostate-specific antigen based on conductivity nanocomposite with halloysite nanotubes. Analytical and Bioanalytical Chemistry, 409, 32453251.CrossRefGoogle ScholarPubMed
Lisuzzo, L., Cavallaro, G., Parisi, F., Milioto, S., & Lazzara, G. (2019a). Colloidal stability of halloysite clay nanotubes. Ceramics International, 45, 28582865.CrossRefGoogle Scholar
Lisuzzo, L., Cavallaro, G., Milioto, S., & Lazzara, G. (2019b). Layered composite based on halloysite and natural polymers: A carrier for the pH controlled release of drugs. New Journal of Chemistry, 43, 1088710893.CrossRefGoogle Scholar
Liu, M., Zhang, Y., Wu, C., Xiong, S., & Zhou, C. (2012). Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. International Journal of Biological Macromolecules, 51, 566575.CrossRefGoogle ScholarPubMed
Liu, M., Wu, C., Jiao, Y., Xiong, S., & Zhou, C. (2013). Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. Journal of Materials Chemistry B, 1, 20782089.CrossRefGoogle ScholarPubMed
Liu, H. Y., Du, L., Zhao, Y. T., & Tian, W. Q. (2015a). In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application. Journal of Nanomaterials, 2015, Article ID 68532.CrossRefGoogle Scholar
Liu, M., Dai, L., Shi, H., Xiong, S., & Zhou, C. (2015b). In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Materials Science and Engineering: C, 49, 700712.CrossRefGoogle Scholar
Liu, H. Y., Du, L., Zhao, Y. T., & Tian, W. Q. (2015c) In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application, Journal of Nanomaterials, 2015, ID 685323CrossRefGoogle Scholar
Liu, M., Zhang, J., Li, J. F., & Wang, X. X. (2016). Roles of curcumin combined with paclitaxel on growth inhibition and apoptosis of oral squamous cell carcinoma cell line CAL27 in vitro. Shanghai kou qiang yi xue = Shanghai Journal of Stomatology, 25, 538541.Google ScholarPubMed
Liu, M., Fakhrullin, R., Novikov, A., Panchal, A., & Lvov, Y. (2019). Tubule nanoclay organic heterostructures for biomedical applications. Macromolecular Bioscience, 19, 1800419.CrossRefGoogle ScholarPubMed
Lo Dico, G., Semilia, F., Milioto, S., Parisi, F., Cavallaro, G., Inguì, G., Makaremi, M., Pasbakhsh, P., & Lazzara, G. (2018). Microemulsion encapsulated into halloysite nanotubes and their applications for cleaning of a marble surface. Applied Sciences, 8, 1455.CrossRefGoogle Scholar
Long, Z., Wu, Y. P., Gao, H. Y., Li, Y. F., He, R. R., & Liu, M. (2018a). Functionalization of halloysite nanotubes via grafting of dendrimer for efficient intracellular delivery of siRNA. Bioconjugate Chemistry, 29, 26062618.CrossRefGoogle ScholarPubMed
Long, Z., Wu, Y. P., Gao, H. Y., Zhang, J., Ou, X., He, R. R., & Liu, M. (2018b). In vitro and in vivo toxicity evaluation of halloysite nanotubes. Journal of Materials Chemistry B, 6, 72047216.CrossRefGoogle ScholarPubMed
Lun, H., Ouyang, J., & Yang, H. (2014). Natural halloysite nanotubes modified as an aspirin carrier. RSC Advances, 4, 4419744202.CrossRefGoogle Scholar
Luo, X., Zhang, J., Wu, Y. P., Yang, X., Kuang, X. P., Li, W. X., Li, Y. F., He, R. R., & Liu, M. (2020a). Multifunctional HNT@Fe3O4@PPy@DOX nanoplatform for effective chemophotothermal combination therapy of breast cancer with MR imaging. ACS Biomaterials Science & Engineering, 6, 33613374.CrossRefGoogle ScholarPubMed
Luo, Y., Humayun, A., & Mills, D. K. (2020b). Surface modification of 3D printed PLA/halloysite composite scaffolds with antibacterial and osteogenic capabilities. Applied Sciences, 10, 3971.CrossRefGoogle Scholar
Lvov, Y., Wang, W., Zhang, L., & Fakhrullin, R. (2016). Halloysite clay nanotubes for loading and sustained release of functional compounds. Advanced Materials, 28, 12271250.CrossRefGoogle ScholarPubMed
Ma, W., Wu, H., Higaki, Y., & Takahara, A. (2018). Halloysite nanotubes: green nanomaterial for functional organic-inorganic nanohybrids. The Chemical Record, 18, 986999.CrossRefGoogle ScholarPubMed
Madani, S. Y., Mandel, A., & Seifalian, A. M. (2013). A concise review of carbon nanotube's toxicology. Nano Reviews, 4, 21521.CrossRefGoogle ScholarPubMed
Maisel, K., Sasso, M. S., Potin, L., & Swartz, M. A. (2017). Exploiting lymphatic vessels for immunomodulation: rationale, opportunities, and challenges. Advanced Drug Delivery Reviews, 114, 4359.CrossRefGoogle ScholarPubMed
Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O., Pham, H. M., & Tran, S. D. (2019). Smart hydrogels in tissue engineering and regenerative medicine. Materials, 12, 3323.CrossRefGoogle ScholarPubMed
Massaro, M., Amorati, R., Cavallaro, G., Guernelli, S., Lazzara, G., Milioto, S., Noto, R., Poma, P., & Riela, S. (2016). Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids and Surfaces B: Biointerfaces, 140, 505513.CrossRefGoogle ScholarPubMed
Massaro, M., Colletti, C. G., Lazzara, G., Milioto, S., Noto, R., & Riela, S. (2017). Halloysite nanotubes as support for metal-based catalysts. Journal of Materials Chemistry A, 5, 1327613293.CrossRefGoogle Scholar
Massaro, M., Cavallaro, G., Colletti, C. G., Lazzara, G., Milioto, S., Noto, R., & Riela, S. (2018). Chemical modification of halloysite nanotubes for controlled loading and release. Journal of Materials Chemistry B, 6, 34153433.CrossRefGoogle ScholarPubMed
Massaro, M., Noto, R., & Riela, S. (2020). Past, present and future perspectives on halloysite clay minerals. Molecules, 25, 4863.CrossRefGoogle ScholarPubMed
Mirzapur, P., Khazaei, M. R., Moradi, M. T., & Khazaei, M. (2018). Apoptosis induction in human breast cancer cell lines by synergic effect of raloxifene and resveratrol through increasing proapoptotic genes. Life Sciences, 205, 4553.CrossRefGoogle ScholarPubMed
Naumenko, E., & Fakhrullin, R. (2019). Halloysite nanoclay/biopolymers composite materials in tissue engineering. Biotechnology Journal, 14, 1900055.CrossRefGoogle ScholarPubMed
Naumenko, E. A., Guryanov, I. D., Yendluri, R., Lvov, Y. M., & Fakhrullin, R. F. (2016). Clay nanotube–biopolymer composite scaffolds for tissue engineering. Nanoscale, 8, 72577271.CrossRefGoogle ScholarPubMed
Ou, Q., Huang, K., Fu, C., Huang, C., Fang, Y., Gu, Z., Wu, J., & Wang, Y. (2020). Nanosilver-incorporated halloysite nanotubes/gelatin methacrylate hybrid hydrogel with osteoimmunomodulatory and antibacterial activity for bone regeneration. Chemical Engineering Journal, 382, 123019.CrossRefGoogle Scholar
Ouyang, J., Mu, D., Zhang, Y., & Yang, H. (2018). Mineralogy and physico-chemical data of two newly discovered halloysite in China and their contrasts with some typical minerals. Minerals, 8, 108.CrossRefGoogle Scholar
Pan, Q., Li, N., Hong, Y., Tang, H., Zheng, Z., Weng, S., Zheng, Y., & Huang, L. (2017). Halloysite clay nanotubes as effective nanocarriers for the adsorption and loading of vancomycin for sustained release. RSC Advances, 7, 2135221359.CrossRefGoogle Scholar
Pasbakhsh, P., Churchman, G. J., & Keeling, J. L. (2013). Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Applied Clay Science, 74, 4757.CrossRefGoogle Scholar
Patel, S., Jammalamadaka, U., Sun, L., Tappa, K., & Mills, D. K. (2016). Sustained release of antibacterial agents from doped halloysite nanotubes. Bioengineering, 3, 1.CrossRefGoogle Scholar
Patil, U. S., Adireddy, S., Jaiswal, A., Mandava, S., Lee, B. R., & Chrisey, D. B. (2015). In vitro/in vivo toxicity evaluation and quantification of iron oxide nanoparticles. International Journal of Molecular Sciences, 16, 2441724450.CrossRefGoogle ScholarPubMed
Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., del Pilar Rodriguez-Torres, M., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H. S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16, 133.CrossRefGoogle ScholarPubMed
Persano, F., Batasheva, S., Fakhrullina, G., Gigli, G., Leporatti, S., & Fakhrullin, R. (2021). Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. Journal of Materials Chemistry B, 9, 27562784.CrossRefGoogle ScholarPubMed
Qi, R., Guo, R., Shen, M., Cao, X., Zhang, L., Xu, J., Yu, J., & Shi, X. (2010). Electrospun poly (lactic-co-glycolic acid)/halloysite nanotube composite nanofibers for drug encapsulation and sustained release. Journal of Materials Chemistry, 20, 1062210629.CrossRefGoogle Scholar
Rao, K. M., Kumar, A., Suneetha, M., & Han, S. S. (2018). pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery. InternationalJournal of Biological Macromolecules, 112, 119125.CrossRefGoogle ScholarPubMed
Rashid, M., Chetehouna, K., Cablé, A., & Gascoin, N. (2021). Analysing flammability characteristics of green biocomposites: An overview. Fire Technology, 57, 3167.CrossRefGoogle Scholar
Rawtani, D., Pandey, G., Tharmavaram, M., Pathak, P., Akkireddy, S., & Agrawal, Y. K. (2017). Development of a novel 'nanocarrier'system based on Halloysite Nanotubes to overcome the complexation of ciprofloxacin with iron: An in vitro approach. Applied Clay Science, 150, 293302.CrossRefGoogle Scholar
Riela, S., Massaro, M., Colletti, C. G., Bommarito, A., Giordano, C., Milioto, S., Noto, R., Poma, P., & Lazzara, G. (2014). Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity. InternationalJournal of Pharmaceutics, 475, 613623.Google ScholarPubMed
Rong, R., Xu, X., Zhu, S., Li, B., Wang, X., & Tang, K. (2016). Facile preparation of homogeneous and length controllable halloysite nanotubes by ultrasonic scission and uniform viscosity centrifugation. Chemical Engineering Journal, 291, 2029.CrossRefGoogle Scholar
Rozhina, E., Ishmukhametov, I., Batasheva, S., Akhatova, F., & Fakhrullin, R. (2019). Nanoarchitectonics meets cell surface engineering: Shape recognition of human cells by halloysite-doped silica cell imprints. Beilstein Journal of Nanotechnology, 10, 18181825.CrossRefGoogle ScholarPubMed
Rozhina, E., Panchal, A., Akhatova, F., Lvov, Y., & Fakhrullin, R. (2020). Cytocompatibility and cellular uptake of alkylsilanemodified hydrophobic halloysite nanotubes. Applied Clay Science, 185, 105371.CrossRefGoogle Scholar
Ryman-Rasmussen, J. P., Cesta, M. F., Brody, A. R., Shipley-Phillips, J. K., Everitt, J. I., Tewksbury, E. W., Moss, O. R., Wong, B. A., Dodd, D. E., Andersen, M. E., & Bonner, J. C. (2009). Inhaled carbon nanotubes reach the subpleural tissue in mice. Nature Nanotechnology, 4, 747751.CrossRefGoogle ScholarPubMed
Saif, M. J., & Asif, H. M. (2015). Escalating applications of halloysite nanotubes. Journal of the Chilean Chemical Society, 60, 29492953.CrossRefGoogle Scholar
Saif, M. J., Asif, H. M., & Naveed, M. (2018). Properties and modification methods of halloysite nanotubes: a state-of-the-art review. Journal of the Chilean Chemical Society, 63, 41094125.CrossRefGoogle Scholar
Sandri, G., Aguzzi, C., Rossi, S., Bonferoni, M. C., Bruni, G., Boselli, C., Cornaglia, A. I., Riva, F., Viseras, C., Caramella, C., & Ferrari, F. (2017). Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomaterialia, 57, 216224.CrossRefGoogle ScholarPubMed
Satish, S., Tharmavaram, M., & Rawtani, D. (2019). Halloysite nanotubes as a nature's boon for biomedical applications. Nanobiomedicine, 6, 1849543519863625.CrossRefGoogle ScholarPubMed
Schmitt, H., Creton, N., Prashantha, K., Soulestin, J., Lacrampe, M. F., & Krawczak, P. (2015). Melt-blended halloysite nanotubes/wheat starch nanocomposites as drug delivery system. Polymer Engineering & Science, 55, 573580.CrossRefGoogle Scholar
Setter, O. P., & Segal, E. (2020). Halloysite nanotubes-the nano-bio interface. Nanoscale, 12, 2344423460.CrossRefGoogle Scholar
Shao, L., Wang, X., Yang, B., Wang, Q., Tian, Q., Ji, Z., & Zhang, J. (2017). A highly sensitive ascorbic acid sensor based on hierarchical polyaniline coated halloysite nanotubes prepared by electrophoretic deposition. Electrochimica Acta, 255, 286297.CrossRefGoogle Scholar
Sharif, S., Abbas, G., Hanif, M., Bernkop-Schnürch, A., Jalil, A., & Yaqoob, M. (2019). Mucoadhesive micro-composites: Chitosan coated halloysite nanotubes for sustained drug delivery. Colloids and Surfaces B: Biointerfaces, 184, 110527.CrossRefGoogle ScholarPubMed
Shi, Y. F., Tian, Z., Zhang, Y., Shen, H. B., & Jia, N. Q. (2011). Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Research Letters, 6, 17.CrossRefGoogle ScholarPubMed
Shi, R., Niu, Y., Gong, M., Ye, J., Tian, W., & Zhang, L. (2018). Antimicrobial gelatin-based elastomer nanocomposite membrane loaded with ciprofloxacin and polymyxin B sulfate in halloysite nanotubes for wound dressing. Materials Science and Engineering: C, 87, 128138.CrossRefGoogle ScholarPubMed
Soloperto, G., Conversano, F., Greco, A., Casciaro, E., Casciaro, S., Ragusa, A., & Lay-Ekuakille, A. (2013). Assessment of the enhancement potential of halloysite nanotubes for echographic imaging. Proceedings of the IEEE International Symposium on Medical Measurements and Applications Proceedings (MeMeA), Gatineau, QC, Canada, 4–5 May 2013; pp. 3034.CrossRefGoogle Scholar
Tan, D., Yuan, P., Annabi-Bergaya, F., Liu, D., Wang, L., Liu, H., & He, H. (2014). Loading and in vitro release of ibuprofen in tubular halloysite. Applied Clay Science, 96, 5055.CrossRefGoogle Scholar
Tan, D., Yuan, P., Liu, D., & Du, P. (2016). Surface modifications of halloysite. In Yuan, P., Thill, A., & Bergaya, F. (Eds.), Developments in Clay Science (Vol. 7, pp. 167201). Elsevier.Google Scholar
Tarasova, E., Naumenko, E., Rozhina, E., Akhatova, F., & Fakhrullin, R. (2019). Cytocompatibility and uptake of polycations-modified halloysite clay nanotubes. Applied Clay Science, 169, 2130.CrossRefGoogle Scholar
Teixeira, A. F., Fernandes, L. G., Cavenague, M. F., Takahashi, M. B., Santos, J. C., Passalia, F. J., Daroz, B. B., Kochi, L. T., Vieira, M. L., & Nascimento, A. L. (2019). Adjuvanted leptospiral vaccines: Challenges and future development of new leptospirosis vaccines. Vaccine, 37, 39613973.CrossRefGoogle ScholarPubMed
Tian, X., Wang, W., Wang, Y., Komarneni, S., & Yang, C. (2015). Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr (VI). Microporous and Mesoporous Materials, 207, 4652.CrossRefGoogle Scholar
Tully, J., Yendluri, R., & Lvov, Y. (2016). Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules, 17, 615621.CrossRefGoogle ScholarPubMed
Utech, S., & Boccaccini, A. R. (2016). A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. Journal of Materials Science, 51, 271310.CrossRefGoogle Scholar
Venkatesh, C., Clear, O., Major, I., Lyons, J. G., & Devine, D. M. (2019). Faster release of lumen-loaded drugs than matrix-loaded equivalent in polylactic acid/halloysite nanotubes. Materials, 12, 1830.CrossRefGoogle ScholarPubMed
Venugopal, J., & Ramakrishna, S. (2005). Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration. Tissue Engineering, 11, 847854.CrossRefGoogle ScholarPubMed
Vergaro, V., Abdullayev, E., Lvov, Y. M., Zeitoun, A., Cingolani, R., Rinaldi, R., & Leporatti, S. (2010). Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules, 11, 820826.CrossRefGoogle ScholarPubMed
Vikulina, A., Voronin, D., Fakhrullin, R., Vinokurov, V., & Volodkin, D. (2020). Naturally derived nano-and micro-drug delivery vehicles: halloysite, vaterite and nanocellulose. New Journal of Chemistry, 44, 56385655.CrossRefGoogle Scholar
Wang, R., Schuman, T., Vuppalapati, R. R., & Chandrashekhara, K. (2014). Fabrication of bio-based epoxy–clay nanocomposites. Green Chemistry, 16, 18711882.CrossRefGoogle Scholar
Wang, X., Gong, J., Rong, R., Gui, Z., Hu, T., & Xu, X. (2018). Halloysite nanotubes-induced Al accumulation and fibrotic response in lung of mice after 30-day repeated oral administration. Journal of Agricultural and Food Chemistry, 66, 29252933.CrossRefGoogle ScholarPubMed
Wu, K., Feng, R., Jiao, Y., & Zhou, C. (2017). Effect of halloysite nanotubes on the structure and function of important multiple blood components. Materials Science and Engineering: C, 75, 7278.CrossRefGoogle Scholar
Wu, Y., Zhang, Y., Ju, J., Yan, H., Huang, X., & Tan, Y. (2019). Advances in halloysite nanotubes–polysaccharide nanocomposite preparation and applications. Polymers, 11, 987.CrossRefGoogle ScholarPubMed
Xia, Y., Rubino, M., & Auras, R. (2019). Interaction of nanoclayreinforced packaging nanocomposites with food simulants and compost environments. Advances in Food and Nutrition Research, 88, 275298.CrossRefGoogle ScholarPubMed
Xue, J., Niu, Y., Gong, M., Shi, R., Chen, D., Zhang, L., & Lvov, Y. (2015). Electrospun microfiber membranes embedded with drugloaded clay nanotubes for sustained antimicrobial protection. ACS Nano, 9, 16001612.CrossRefGoogle ScholarPubMed
Yah, W. O., Takahara, A., & Lvov, Y. M. (2012). Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. Journal of the American Chemical Society, 134, 18531859.CrossRefGoogle ScholarPubMed
Yamina, A. M., Fizir, M., Itatahine, A., He, H., & Dramou, P. (2018). Preparation of multifunctional PEG-graft-halloysite nanotubes for controlled drug release, tumor cell targeting, and bio-imaging. Colloids and Surfaces B: Biointerfaces, 170, 322329.CrossRefGoogle ScholarPubMed
Yang, J., Wu, Y., Shen, Y., Zhou, C., Li, Y. F., He, R. R., & Liu, M. (2016). Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes. ACS Applied Materials & Interfaces, 8, 2657826590.CrossRefGoogle ScholarPubMed
Yendluri, R., Lvov, Y., de Villiers, M. M., Vinokurov, V., Naumenko, E., Tarasova, E., & Fakhrullin, R. (2017). Paclitaxel encapsulated in halloysite clay nanotubes for intestinal and intracellular delivery. Journal of Pharmaceutical Sciences, 106, 31313139.CrossRefGoogle ScholarPubMed
Yuan, P., Tan, D., & Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 112, 7593.CrossRefGoogle Scholar
Zhang, X., Men, K., Zhang, Y., Zhang, R., Yang, L., & Duan, X. (2019). Local and systemic delivery of mRNA encoding survivinT34A by lipoplex for efficient colon cancer gene therapy. International Journal of Nanomedicine, 14, 2733.CrossRefGoogle ScholarPubMed
Zhao, X., Wan, Q., Fu, X., Meng, X., Ou, X., Zhong, R., Zhou, Q., & Liu, M. (2019a). Toxicity evaluation of one-dimensional nanoparticles using caenorhabditis elegans: a comparative study of halloysite nanotubes and chitin nanocrystals. ACS Sustainable Chemistry& Engineering, 7, 1896518975.CrossRefGoogle Scholar
Zhao, X., Zhou, C., Lvov, Y., & Liu, M. (2019b). Clay nanotubes aligned with shear forces for mesenchymal stem cell patterning. Small, 15, 1900357.CrossRefGoogle ScholarPubMed
Zhao, X., Zhou, C., & Liu, M. (2020). Self-assembled structures of halloysite nanotubes: towards the development ofhigh-performance biomedical materials. Journal of Materials Chemistry B, 8,838–851.CrossRefGoogle ScholarPubMed