Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-11T12:03:35.254Z Has data issue: false hasContentIssue false

Efficient Concentration of PB From Water by Reactions With Layered Alkali Silicates, Magadiite and Octosilicate

Published online by Cambridge University Press:  01 January 2024

Donhatai Sruamsiri
Affiliation:
School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
Thipwipa Sirinakorn
Affiliation:
School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
Makoto Ogawa*
Affiliation:
School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
*
*E-mail address of corresponding author: waseda.ogawa@gmail.com

Abstract

Human health problems are often related to contamination of the aqueous environment by toxic metal ions. In the present study, two layered alkali silicates (magadiite and octosilicate) were examined to assess removal of Pb2+ from aqueous solutions in terms of quantity and kinetics. The ion-exchange reaction between the silicates and aqueous solutions of lead(II) acetate at various concentrations was examined at room temperature for 24 h. The adsorption isotherms were H-type, showing the strong interactions between Pb2+ and the silicates. The amounts of Pb2+ adsorbed were as much as 1.23 mmol Pb/g magadiite and 2.32 mmol Pb/g octosilicate, which are larger than the reported values for various ion exchangers. They were larger than the theoretical cation exchange capacities (2.2 and 3.7 meq/g for magadiite and octosilicate, respectively), suggesting that the collection of Pb2+ included the precipitation as basic lead salts in addition to the ion exchange. The adsorption isotherms for magadiite and octosilicate fitted the Langmuir equation with correlation coefficients, R2, of 0.9991 and 0.9972, respectively. The adsorption of Pb2+ onto the layered alkali silicates from acidic aqueous solution was examined to obtain smaller amounts of adsorbed Pb2+ (0.32 mmol Pb/g magadiite and 0.34 mmol Pb/g octosilicate), confirming the important role of pH on the surface charge of the layered silicates in terms of ion exchange. The adsorption of Pb2+ reached equilibrium within 5 min for magadiite while it took 60 min for octosilicate. The difference was in the particle morphology; smoother diffusion of Pb2+ was possible through flower-shaped aggregates of particles of magadiite.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is based on a presentation made during the 4th Asian Clay Conference, Thailand, June 2020.

References

Abbas, A., Al-Amer, A. M., Laoui, T., Al-Marri, M. J., Nasser, M. S., Khraisheh, M., & Atieh, M. A. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separation and Purification Technology, 157, 141161.Google Scholar
Al-Zboon, K., Al-Harahsheh, M. S., & Hani, F. B. (2011). Fly ashbased geopolymer for Pb removal from aqueous solution. Journal of Hazardous Materials, 188(1-3), 414421.CrossRefGoogle ScholarPubMed
Aliyu, A., Kariim, I., & Abdulkareem, S. A. (2017). Effects of aspect ratio of multi-walled carbon nanotubes on coal washery waste water treatment. Journal of Environmental Management, 202, 8493.CrossRefGoogle ScholarPubMed
Attar, K., Demey, H., Bouazza, D., & Sastre, A. M. (2019). Sorption and desorption studies of Pb (II) and Ni (II) from aqueous solutions by a new composite based on alginate and magadiite materials. Polymers, 11(2), 340358.CrossRefGoogle ScholarPubMed
Auerbach, S. M., Carrado, K. A., & Dutta, P. K. (2004). Handbook of Layered Materials. CRC Press, Boca Raton, Florida, USA.CrossRefGoogle Scholar
Baes, C., & Mesmer, R. (1976). The Hydrolysis of Cations. Wiley, Hoboken, New Jersey, USA.Google Scholar
Barbosa, R., Lapa, N., Lopes, H., Gunther, A., Dias, D., & Mendes, B. (2014). Biomass fly ashes as low-cost chemical agents for Pb removal from synthetic and industrial wastewaters. Journal of Colloid and Interface Science, 424, 2736.CrossRefGoogle ScholarPubMed
Benkhatou, S., Djelad, A., Sassi, M., Bouchekara, M., & Bengueddach, A. (2016). Lead (II) removal from aqueous solutions by organic thiourea derivatives intercalated magadiite. Desalination and Water Treatment, 57(20), 93839395.CrossRefGoogle Scholar
Chen, Q., Luo, Z., Hills, C., Xue, G., & Tyrer, M. (2009). Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide. Water Research, 43(10), 26052614.CrossRefGoogle ScholarPubMed
Chen, W. F., Pan, L., Chen, L. F., Yu, Z., Wang, Q., & Yan, C. C. (2014). Comparison of EDTA and SDS as potential surface impregnation agents for lead adsorption by activated carbon. Applied Surface Science, 309, 3845.CrossRefGoogle Scholar
Choudhury, P. R., Mondal, P., & Majumdar, S. (2015). Synthesis of bentonite clay based hydroxyapatite nanocomposites cross-linked by glutaraldehyde and optimization by response surface methodology for lead removal from aqueous solution. RSC Advances, 5(122), 100838100848.CrossRefGoogle Scholar
Clearfield, A. (1996) Comprehensive Supramolecular Chemistry, Vol. 7, Solid-State Supramolecular Chemistry: Two-and Three-Dimensional Inorganic Networks (Alberti, G. and Bein, T., editors). Pergamon.Google Scholar
Dαbrowski, A., Hubicki, Z., Podkościelny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56(2), 91106.CrossRefGoogle Scholar
Deng, Y., Gao, Z., Liu, B., Hu, X., Wei, Z., & Sun, C. (2013). Selective removal of lead from aqueous solutions by ethylenediamine-modified attapulgite. Chemical Engineering Journal, 223, 9198.CrossRefGoogle Scholar
Ding, H., Chen, Y., Fu, T., Bai, P., & Guo, X. (2018). Nanosheet-based magadiite: a controllable two-dimensional trap for selective capture of heavy metals. Journal of Materials Chemistry A, 6(28), 1362413632.CrossRefGoogle Scholar
Divrikli, U., Kartal, A. A., Soylak, M., & Elci, L. (2007). Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations. Journal of Hazardous Materials, 145(3), 459464.CrossRefGoogle Scholar
Dong, L., Zhu, Z., Qiu, Y., & Zhao, J. (2010). Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent. Chemical Engineering Journal, 165(3), 827834.CrossRefGoogle Scholar
Endo, K., Sugahara, Y., & Kuroda, K. (1994). Formation of intercalation compounds of a layered sodium octosilicate with nalkyltrimethylammonium ions and the application to organic derivatization. Bulletin of the Chemical Society of Japan, 67(12), 33523355.CrossRefGoogle Scholar
Giles, C., MacEwan, T., Nakhwa, S., & Smith, D. (1960). A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society, 111, 39733993.CrossRefGoogle Scholar
Glatstein, D. A., & Francisca, F. M. (2015). Influence of pH and ionic strength on Cd, Cu and Pb removal from water by adsorption in Nabentonite. Applied Clay Science, 118, 6167.CrossRefGoogle Scholar
Goel, J., Kadirvelu, K., Rajagopal, C., & Garg, V. K. (2005). Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies. Journal of Hazardous Materials, 125(1-3), 211220.CrossRefGoogle ScholarPubMed
Googerdchian, F., Moheb, A., & Emadi, R. (2012). Lead sorption properties of nanohydroxyapatite-alginate composite adsorbents. Chemical Engineering Journal, 200-202, 471479.CrossRefGoogle Scholar
Guerra, D. L., Pinto, A. A., Airoldi, C., & Viana, R. R. (2008). Adsorption of arsenic(III) into modified lamellar Na-magadiite in aqueous medium—Thermodynamic of adsorption process. Journal of Solid State Chemistry, 181(12), 33743379.CrossRefGoogle Scholar
Guerra, D. L., Ferrreira, J. N., Pereira, M. J., Viana, R. R., & Airoldi, C. (2010). Use of natural and modified magadiite as adsorbents to remove Th(IV), U(VI), and Eu(III) from aqueous media—Thermodynamic and equilibrium study. Clays and Clay Minerals, 58(3), 327339.CrossRefGoogle Scholar
Hatsushika, T. (1996). Ion-exchange characteristics of magadiite for divalent metallic ions. Inorganic Materials, 3, 319326.Google Scholar
Homhuan, N., Bureekaew, S., & Ogawa, M. (2017a). Efficient concentration of Indium(III) from aqueous solution using layered silicates. Langmuir, 33(38), 95589564.CrossRefGoogle ScholarPubMed
Homhuan, N., Imwiset, K., Sirinakorn, T., Bureekaew, S., & Ogawa, M. (2017b). Ion exchange of a layered alkali silicate, magadiite, with metal ions. Clay Science, 21(2), 2128.Google Scholar
Hong, J., Xie, J., Mirshahghassemi, S., & Lead, J. (2020). Metal (Cd, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone-coated magnetite nanoparticles. RSC Advances, 10(6), 32663276.CrossRefGoogle Scholar
Ide, Y., & Ogawa, M. (2007). Efficient way to attach organosilyl groups in the interlayer space of layered solids. Bulletin of the Chemical Society of Japan, 80(8), 16241629.CrossRefGoogle Scholar
Ide, Y., Ochi, N., & Ogawa, M. (2011). Effective and selective adsorption of Zn2+ from seawater on a layered silicate. Angewandte Chemie International Edition, 50(3), 654656.CrossRefGoogle ScholarPubMed
Ide, Y., Sadakane, M., Sano, T., & Ogawa, M. (2014). Functionalization of layered titanates. Journal of Nanoscience and Nanotechnology, 14(3), 21352147.CrossRefGoogle ScholarPubMed
Jamil, T.S., Ibrahim, H. S., Abd El-Maksoud, I. H., & El-Wakeel, S. T. (2010). Application of zeolite prepared from Egyptian kaolin for removal of heavy metals: I. Optimum conditions. Desalination, 258(1-3), 3440.CrossRefGoogle Scholar
Jiang, J., Liang, D., & Zhong, Q. (2011). Precipitation of indium using sodium tripolyphosphate. Hydrometallurgy, 106(3-4), 165169.CrossRefGoogle Scholar
Kabbashi, N. A., Atieh, M. A., Al-Mamun, A., Mirghami, M. E., Alam, M., & Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. Journal of Environmental Sciences, 21(4), 539544.CrossRefGoogle ScholarPubMed
Kaludjerovic-Radoicic, T., & Raicevic, S. (2010). Aqueous Pb sorption by synthetic and natural apatite: Kinetics, equilibrium and thermodynamic studies. Chemical Engineering Journal, 160(2), 503510.CrossRefGoogle Scholar
Kaneko, S., & Ogawa, M. (2013). Effective concentration of dichromate anions using layered double hydroxides from acidic solutions. Applied Clay Science, 75, 109113.CrossRefGoogle Scholar
Komatsu, Y., Fujiki, Y., & Sasaki, T. (1982). Ion exchange equilibrium of alkali metal ions between crystalline hydrous titanium dioxide fibers and aqueous solution. Bunseki Kagaku, 31(7), 225229.CrossRefGoogle Scholar
Kosuge, K., Yamazaki, A., Tsunashima, A., & Otsuka, R. (1992). Hydrothermal synthesis of magadiite and kenyaite. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, 100, 326331.CrossRefGoogle Scholar
Lagaly, G., Beneke, K., & Weiss, A. (1975). Magadiite and Hmagadiite. I. Sodium magadiite and some of its derivatives. American Mineralogist, 60(7-8), 642649.Google Scholar
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 13611403.CrossRefGoogle Scholar
Li, Y.-H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., & Wei, B. (2002) Lead adsorption on carbon nanotubes. Chemical Physics Letters, 357(3,4), 263266.CrossRefGoogle Scholar
Lim, W. T., Jang, J.-H., Park, N.-Y., Paek, S.-M., Kim, W.-C., & Park, M. (2017). Spontaneous nanoparticle formation coupled with selective adsorption in magadiite. Journal of Materials Chemistry A, 5(8), 41444149.CrossRefGoogle Scholar
Liu, Y., Yan, C., Zhang, Z., Wang, H., Zhou, S., & Zhou, W. (2016). A comparative study on fly ash, geopolymer and faujasite block for Pb removal from aqueous solution. Fuel, 185, 181189.CrossRefGoogle Scholar
Mandel, K., Drenkova-Tuhtan, A., Hutter, F., Gellermann, C., Steinmetz, H., & Sextl, G. (2013). Layered double hydroxide ion exchangers on superparamagnetic microparticles for recovery of phosphate from waste water. Journal of Materials Chemistry A, 1(5), 18401848.CrossRefGoogle Scholar
Miyata, S. (1983). Anion-exchange properties of hydrotalcite-like compounds. Clays and Clay Minerals, 31(4), 305311.CrossRefGoogle Scholar
Mizukami, N., Tsujimura, M., Kuroda, K., & Ogawa, M. (2002). Preparation and characterization of Eu-magadiite intercalation compounds. Clays and Clay Minerals, 50(6), 799806.CrossRefGoogle Scholar
Moattari, R. M., Rahimi, S., Rajabi, L., Derakhshan, A. A., & Keyhani, M. (2015). Statistical investigation of lead removal with various functionalized carboxylate ferroxane nanoparticles. Journal of Hazardous Materials, 283, 276291.CrossRefGoogle ScholarPubMed
Mokhtar, A., Medjhouda, Z. A. K., Djelad, A., Boudia, A., Bengueddach, A., & Sassi, M. (2018). Structure and intercalation behavior of copper (II) on the layered sodium silicate magadiite material. Chemical Papers, 72(1), 3950.CrossRefGoogle Scholar
Mousa, N. E., Simonescu, C. M., Patescu, R.-E., Onose, C., Tardei, C., Culita, D. C., Oprea, O., Patroi, D., & Lavric, V. (2016). Pb2+ removal from aqueous synthetic solutions by calcium alginate and chitosan coated calcium alginate. Reactive and Functional Polymers, 109, 137150.CrossRefGoogle Scholar
Murakami, Y., Nanba, M., Tagashira, S., & Sasaki, Y. (2006). Ion-exchange and structural properties of magadiite. Clay Science, 12, 3741.Google Scholar
Ogawa, M., & Takahashi, Y. (2007). Preparation and thermal decomposition of Co(II)-magadiite intercalation compounds. Clay Science, 13(4-5), 133138.Google Scholar
Okada, T., Seki, Y., & Ogawa, M. (2014). Designed nanostructures of clay for controlled adsorption of organic compounds. Journal of Nanoscience and Nanotechnology, 14(3), 21212134.CrossRefGoogle ScholarPubMed
Otunola, B. O., & Ololade, O. O. (2020). A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environmental Technology and Innovation, 100692.CrossRefGoogle Scholar
Robati, D. (2013). Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. Journal of Nanostructure in Chemistry, 3(1), 55.CrossRefGoogle Scholar
Rojo, J. M., Ruiz-Hitzky, E., & Sanz, J. (1988). Proton-sodium exchange in magadiite. spectroscopic study (NMR, IR) of the evolution of interlayer OH groups. Inorganic Chemistry, 27(16), 27852790.CrossRefGoogle Scholar
Schwieger, W., Lagaly, G., Auerbach, S., Carrado, K., & Dutta, P. (2004). Handbook of Layered Materials. Marcel Dekker, Inc., New York.Google Scholar
Selvam, T., Inayat, A., & Schwieger, W. (2014). Reactivity and applications of layered silicates and layered double hydroxides. Dalton Transactions, 43(27), 1036510387.CrossRefGoogle Scholar
Sirinakorn, T., Imwiset, K., Bureekaew, S., & Ogawa, M. (2018a). Inorganic modification of layered silicates toward functional inorganic-inorganic hybrids. Applied Clay Science, 153, 187197.CrossRefGoogle Scholar
Sirinakorn, T., Bureekaew, S., & Ogawa, M. (2018b). Highly efficient Indium (III) collection from water by a reaction with a layered titanate (Na2Ti3O7). European Journal of Inorganic Chemistry, 2018(34), 38353839.CrossRefGoogle Scholar
Sirinakorn, T., Bureekaew, S., & Ogawa, M. (2019). Layered titanates (Na2Ti3O7 and Cs2Ti5O11) as very high capacity adsorbents of Cadmium (II). Bulletin of the Chemical Society of Japan, 92(1), 16.CrossRefGoogle Scholar
Taylor, P., & Lopata, V. J. (1984). Stability and solubility relationships between some solids in the system PbO–CO2–H2O. Canadian Journal of Chemistry, 62(3), 395402.Google Scholar
Vortmann, S., Rius, J., Siegmann, S., & Gies, H. (1997). Ab initio structure solution from X-ray powder data at moderate resolution: crystal structure of a microporous layer silicate. The Journal of Physical Chemistry B, 101(8), 12921297.CrossRefGoogle Scholar
Wang, H., Zhou, A., Peng, F., Yu, H., & Yang, J. (2007). Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb (II). Journal of Colloid and Interface Science, 316(2), 277283.CrossRefGoogle Scholar