Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-02T14:56:36.182Z Has data issue: false hasContentIssue false

Effect of Montmorillonite Layer Charge on the Thermal Stability of Bentonite

Published online by Cambridge University Press:  01 January 2024

Yating Qin
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
Tongjiang Peng
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
Hongjuan Sun*
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
Li Zeng
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
Yao Li
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
Can Zhou
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
*
*E-mail address of corresponding author: sunhongjuan@swust.edu.cn

Abstract

The thermal stability of bentonite is vitally important for its application in the casting field and the layer charge of montmorillonite (Qm) is one of its central crystal-chemical parameters. As the main component of bentonite, the influence of Qm on montmorillonite properties and behavior needs to be considered if bentonite is to be used in high-temperature environments. The objective of the current study was to investigate the relationship between Qm and the thermal stability of Chinese bentonite samples collected from Wuhu, Anhui Province (marked as WH); Xinyang, Henan Province (marked as XY); and Santai, Sichuan Province (marked as ST) below. The values of Qm were obtained using the O (11) method, and the structural properties of the bentonite samples were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetry-differential scanning calorimetry (TG-DSC), and field emission scanning electron microscopy (FESEM). The results showed that, in the samples investigated, Qm was inversely related to the thermal stability of bentonite. The Qm value (electrons per half unit cell, e/huc) was greatest for sample ST (0.725 e/huc), followed by sample XY (0.470 e/huc), and by sample WH (0.354 e/huc). The dehydroxylation temperature changed related to Qm; the sample with the largest Qm value was WH (701°C), followed by sample XY (684°C), and sample ST (630°C). After the samples were calcined at 600°C, sample WH had the best montmorillonite structural integrity with the greatest degree of reusability (78.21%); while the montmorillonite structures of samples XY and ST were destroyed, and their reusabilities were only 9.48 and 6.01%, respectively.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alver, B. E., & Gunal, A. (2016). Thermal, structural and ethylene adsorption properties of Ag-, Cu- and Fe-modified bentonite from Turkey. Journal of Thermal Analysis and Calorimetry, 126, 15331540.CrossRefGoogle Scholar
Bala, P., Samantaray, B. K., & Srivastava, S. K. (2012). Dehydration transformation in Ca-montmorillonite. Bulletin of Materials Science, 23, 6167.CrossRefGoogle Scholar
Beňo, J., Vontorová, J., Matìjka, V., & Gál, K. (2015). Evaluation of the thermal resistance of selected bentonite binders. Materiali in Tehnologije, 49, 465469.CrossRefGoogle Scholar
Boeva, N. M., Bocharnikova, Y. I., Belousov, P. E., & Zhigarev, V. V. (2016). Determining the cation exchange capacity of montmorillonite by simultaneous thermal analysis method. Russian Journal of Physical Chemistry A, 90, 15251529.CrossRefGoogle Scholar
Boylu, F. (2011). Optimization of foundry sand characteristics of soda-activated calcium bentonite. Applied Clay Science, 52, 104108.CrossRefGoogle Scholar
Caglar, B., Topcu, C., Coldur, F., Sarp, G., Caglar, S., Tabak, A., & Sahin, E. (2016). Structural, thermal, morphological and surface charge properties of dodecyltrimethylammonium-smectite composites. Journal of Molecular Structure, 1105, 7079.CrossRefGoogle Scholar
Chai, M., Li, C. X., Jiang, W., & Du, F. (2013). Effect of cations on thermal properties of montmorillonite. Global Geology, 16, 8893.Google Scholar
Chen, T. X., Yuan, Y., Zhao, Y. L., Rao, F., & Song, S. X. (2018). Effect of layer charges on exfoliation of montmorillonite in aqueous solutions. Colloids and Surfaces A – Physicochemical and Engineering Aspects, 548, 9297.Google Scholar
Finck, N., Schlegel, M. L., Dardenne, K., Adam, C., Kraft, S., Bauer, A., & Robert, J. L. (2019). Structural iron in smectites with different charge locations. Physics and Chemistry of Minerals, 46, 639661.CrossRefGoogle Scholar
Gauglitz, R., & Schwiete, H. E. (1964). Thermochemical investigations on montmorillonite with regards to type, grain size, and cation loading. Berichte Deutsche Keramik Ges, 38, 4349.Google Scholar
Geng, G. F., & Liu, C. (2013). The application of bentonite on green sand molding. China Foundry Machinery and Technology, 000, 2931.Google Scholar
Gong, Z. J., Liao, L. B., Lv, G. C., & Wang, X. Y. (2016). A simple method for physical purification of bentonite. Applied Clay Science, 119, 294300.CrossRefGoogle Scholar
Grim, R. E., & Rowland, R. A. (1942). Differential thermal analysis of clay minerals and other hydrous materials. American Mineralogist, 27, 746761.Google Scholar
Hoang-Minh, T., Kasbohm, J., Nguyen-Thanh, L., Nga, P. T., Lai, L. T., Duong, N. T., Thanh, N. D., Thuyet, N. T. M., Anh, D. D., Pusch, R., Knutsson, S., & Mahlmann, R. F. (2019). Use of TEM-EDX for structural formula identification of clay minerals: A case study of Di Linh bentonite Vietnam. Journal of Applied Crystallography, 52, 133147.CrossRefGoogle Scholar
Holtzer, M., Bobrowski, A., & Żymankowska-Kumon, S. (2011). Temperature influence on structural changes of foundry bentonites. Journal of Molecular Structure, 1004, 102108.CrossRefGoogle Scholar
Jiang, X., Nie, J., Bian, L., Dong, F., Song, M., He, Y., He, H., Zheng, Z., Huo, T., Li, B., Belzile, N., Sun, S., & Zou, H. (2019). Competitive adsorption of uranyl and toxic trace metal ions at MFe2O4-montmorillonite (M = Mn, Fe, Zn Co, or Ni) interfaces. Clays and Clay Minerals, 67, 291305.CrossRefGoogle Scholar
Jordan, G., Eulenkamp, C., Calzada, E., Schillinger, B., Hoelzel, M., Gigler, A., Stanjek, H., & Schmahl, W. W. (2013). Quantitative in situ study of the dehydration of bentonite-bonded molding sands. Clays and Clay Minerals, 61, 133140.CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R., Ufer, K., & Meyer, F. M. (2003). Comparison of methods for the quantification of montmorillonite in bentonites. Applied Clay Science, 22, 145151.CrossRefGoogle Scholar
Kaufhold, S., Stucki, J. W., Finck, N., Steininger, R., Zimina, A., Dohrmann, R., Ufer, K., Pentrak, M., & Pentrakova, L. (2017). Tetrahedral charge and Fe content in dioctahedral smectites. Clay Minerals, 52, 5165.CrossRefGoogle Scholar
Koutsopoulou, E., Koutselas, I., Christidis, G. E., Papagiannopoulos, A., & Marantos, I. (2020). Effect of layer charge and charge distribution on the formation of chitosan-smectite bionanocomposites. Applied Clay Science. https://doi.org/10.1016/j.clay.2020.105583.CrossRefGoogle Scholar
Liu, Y. L., Xu, B. Y., Qin, B., Tao, C. Z., Cao, L., Shen, Y. S., & Zhu, S. M. (2020). Novel nimow-clay hybrid catalyst for highly efficient hydrodesulfurization reaction. Catalysis Communications. https://doi.org/10.1016/j.catcom.2020.106086.CrossRefGoogle Scholar
Magzoub, M. I., Nasser, M. S., Hussein, I. A., Benamor, A., Onaizi, S. A., Sultan, A. S., & Mahmoud, M. A. (2017). Effects of sodium carbonate addition, heat and agitation on swelling and rheological behavior of Ca-bentonite colloidal dispersions. Applied Clay Science, 147, 176183.CrossRefGoogle Scholar
Paluszkiewicz, C., Holtzer, M., & Bobrowski, A. (2008). FTIR analysis of bentonite in moulding sands. Journal of Molecular Structure, 880, 109114.CrossRefGoogle Scholar
Qiu, J., Li, G. Q., Liu, D. L., Jiang, S., Wang, G. F., Chen, P., Zhu, X. N., Yao, G., Liu, X. D., & Lyu, X. J. (2019a). Effect of layer charge density on hydration properties of montmorillonite: Molecular dynamics simulation and experimental study. International Journal of Molecular Sciences, 20, 39974013.CrossRefGoogle ScholarPubMed
Qiu, J., Li, G. Q., Jiang, S., Liu, D. L., Chen, P., & Wang, G. F. (2019b). Effect of layer charge on adsorption properties of octadecyl trimethyl ammonium chloride by montmorillonite. Science of Advanced Materials, 11, 299305.CrossRefGoogle Scholar
Qiu, J., Zhang, Y. G., & Lv, X. J. (2007). Study on relation between layer charge and hydro-properties of montmorillonite. Non-Metallic Mines, 30, 1517.Google Scholar
Rakhimova, N. R., Rakhimov, R. Z., Morozov, V. P., & Eskin, A. A. (2021). Calcined low-grade clays as sources for zeolite containing material. Periodica Polytechnica-Civil Engineering, 65, 204214.Google Scholar
Sakizci, M., Alver, B. E., Alver, Ö., & Yörükoğullari, E. (2010). Spectroscopic and thermal studies of bentonites from Ünye, Turkey. Journal of Molecular Structure, 969, 187191.CrossRefGoogle Scholar
Sans, B. E., Guven, O., Esenli, F., & Celik, M. S. (2017). Contribution of cations and layer charges in the smectite structure on zeta potential of Ca-bentonites. Applied Clay Science, 143, 415421.CrossRefGoogle Scholar
Sarikaya, Y., Onal, M., Baran, B., & Alemdaroglu, T. (2000). The effect of thermal treatment on some of the physicochemical properties of a bentonite. Clays and Clay Minerals, 48, 557562.CrossRefGoogle Scholar
Schnetzer, F., Thissen, P., Giraudo, N., & Emmerich, K. (2016). Unraveling the coupled processes of (De) hydration and structural changes in Na+-saturated montmorillonite. Journal of Physical Chemistry C, 120, 1528215287.CrossRefGoogle Scholar
Sun, H. J., Peng, T. J., Liu, B., & Xian, H. Y. (2015). Effects of montmorillonite on phase transition and size of TiO2 nanoparticles in TiO2/montmorillonite nanocomposites. Applied Clay Science, 114, 440446.CrossRefGoogle Scholar
Sun, H. J., Peng, T. J., & Liu, Y. (2007). Measurement and mechanism of layer charge of phyllosilicate with expansive layers. Acta Mineralogica Sinica, 27, 1924.Google Scholar
Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R., & Kaufhold, S. (2008). Quantitative phase analysis of bentonites by the rietveld method. Clays and Clay Minerals, 56, 272282.CrossRefGoogle Scholar
Wolters, F., & Emmerich, K. (2007). Thermal reactions of smectites-Relation of dehydroxylation temperature to octahedral structure. Thermochimica Acta, 462, 8088.CrossRefGoogle Scholar
Wu, P., Wu, H., & Li, R. (2005). The microstructural study of thermal treatment montmorillonite from Heping, China. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 61, 30203025.CrossRefGoogle ScholarPubMed
Wu, P. X., Zhang, H. F., Wang, F. Y., Guo, J. G., & Zhao, W. X. (1999). The SEM study on the montmorillonite and its thermal treatment products. Mineralogy and Petrology, 19, 2125.Google Scholar
Yang, Y. F., Nair, A. K. N., & Sun, S. Y. (2019). Layer charge effects on adsorption and diffusion of water and ions in interlayers and on external surfaces of montmorillonite. ACS Earth and Space Chemistry, 3, 26352645.CrossRefGoogle Scholar
Yang, Y., Yao, H., & Chen, S. (2006). Characteristics of microcosmic structure of guangxi expansive soil. Rock and Soil Mechanics, 27, 155158.Google Scholar
Zhu, T. T., Zhou, C. H., Kabwe, F. B., Wu, Q. Q., Li, C. S., & Zhang, J. R. (2019). Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Applied Clay Science, 169, 4866.CrossRefGoogle Scholar
Żymankowska-Kumon, S., Holtzer, M., Olejnik, E., & Bobrowski, A. (2012). Infuence of the changes of the structure of foundry bentonites on their binding properties. Materials Science, 18, 5761.CrossRefGoogle Scholar