Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-01T19:42:51.230Z Has data issue: false hasContentIssue false

Properties and applications of palygorskite-sepiolite clays

Published online by Cambridge University Press:  09 July 2018

E. Galan*
Affiliation:
Departamento de Cristalografía, Mineralogía y Química Agrícola. Facultad de Química, Universidad de Sevilla, Apdo. 553, 41071 Sevilla, Spain

Abstract

The palygorskite-sepiolite group of clay minerals has a wide range of industrial applications derived mainly from its sorptive, rheological and catalytic properties which are based on the fabric, surface area, porosity, crystal morphology, structure and composition of these minerals. For assessing potential industrial uses, the mineralogical and chemical composition of the clay and its basic physical and physico-chemical parameters must be determined. Then some particular properties of commercial interest can be modified and improved by appropriate thermal, mechanical and acid treatments, surface active agents, organo-mineral derivatives formation, etc. In this paper, a revision of the principal characteristics of commercial palygorskite-sepiolite clays is presented, and potential uses are suggested according to these data. New products and applications are being investigated and those concerning environmental protection in particular, are noted. Finally, possible health effects of these elongate clay minerals are discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, J.L., Rocha, C.M., Ojeda, M.C., Linares, A. & Arroyo, M. (1984) The effect of several surface modified sepiolites on the transition temperatures and crystallinity of filled polypropylene. Angew. MakromoL Chem. 126, 5157.CrossRefGoogle Scholar
Acosta, J.L., Morales, E., Ojeda, M.C. & Linares, A. (1986) The effect of interfacial adhesion and morphology on the mechanical properties of polypropylene composites containing different acid surface treated sepiolites. J. Mater. Sci. 21, 725728.CrossRefGoogle Scholar
Alvarez, A. (1984) Sepiolite: properties and uses. Pp. 253-287 in: Palygorskite and Sepiolite. Occurrences, Genesis and Uses. (Singer, A. & Galán, E., editors) Developments in Sedimentology 37, Elsevier, Amsterdam.Google Scholar
Alvarez, A. & Perez Castell, R. (1982) Sepiolite in the field of animal nutrition. Proc. 5th Int. Cong. Industrial Minerals, Madrid, 37–45.Google Scholar
Alvarez, A., Castillo, A., Perez Castell, R., Santaren, J. & Sastre, J.L. (1985) New trends in the use of sepiolite. Abstracts, Int. Clay Conf., Denver, p. 7.Google Scholar
Ampian, S.G. (1991) Clays. Pp. 271-304 in: Minerals Yearbook, v.1, Metals and Minerals, U.S. Dept. of the Interior, Bureau of Mines, Washington, D.C.Google Scholar
Bonilla, J.L., Lopez Gonzalez, J.D., Ramirez Saenz, A., Rodriguez Reinoso, F. & Valenzuela Calahorro, C. (1981) Activation of a sepiolite with dilute solutions of HNO3 and subsequent heat treatments. II. Determination of surface acid centres. Clay Miner. 16, 173180.CrossRefGoogle Scholar
Bradley, W.F. (1940) The structural scheme of attapulgite. Am. Miner. 25, 405410.Google Scholar
Brauner, K. & Preisinger, A. (1956) Struktur und enstehung des Sepioliths. Tschermaks Miner. Petrog. Mitt., 6, 120140.CrossRefGoogle Scholar
Brigatti, M.F., Medici, L. & Poppi, L. (1995) Interaction of Zn2+ and Pb2+ aqueous solutions with sepiolite. EUROCLAY'95. Leuven, 111-112.Google Scholar
Casal Piga, B. & Ruiz-Hitzky, E. (1977) Reaction of epoxides on mineral surfaces. Organic derivatives of sepiolite. Proc. 3rd Eur. Clay Conf., Oslo, 35-37.Google Scholar
Chambers, C.P.C. (1959) Some industrial applications of the clay mineral sepiolite. Silicates lnds. April, 181-189.Google Scholar
Clarke, G. (1989) Attapulgite's two tiers: gellants and absorbants. Pp. 86–89 in: Industrial Clays: A Special Review. Industrial Minerals, London.Google Scholar
Cornejo, J. & Hermosin, M.C. (1986) Efecto de la temperatura en la acidez superficial del producto obtenido por tratamiento ácido de sepiolita. Bol. Soc. Esp. Mineral. 9, 135138.Google Scholar
Cornejo, J. & Hermosin, M.C. (1988) Structural alteration of sepiolite by dry grinding. Clay Miner. 23, 391398.CrossRefGoogle Scholar
Demircl, S., Erdocan, B. & Akav, Y. (1995) Removal of turbidity and color of sugar juices by using some Turkish bentonites and sepiolite. EUROCLAY'95, Leuven, 158-159.Google Scholar
Fernandez Alvarez, T. (1970) Superficie especffica y estructura de poro de la sepiolita calentada a diferentes temperaturas. Pp. 202–209 in: Poc. Reunión Hispano Belga de Minerales de la Arcilla, Madrid, CSIC.Google Scholar
Fernandez Alvarez, T. (1972) Activación de la sepiolita con ácido clorhídrico. Bol. Soc. Esp. Ceram. Vidr. 11, 365374.Google Scholar
Fernandez Alvarez, T. (1978) Efecto de la deshidratación sobre las propiedades adsorbentes de la palygorskita y sepiolita. Clay Miner. 13, 375–386.CrossRefGoogle Scholar
Fernandez Hernandez, M.N. & Ruiz-Hitzky, E. (1979) Interacción de isocianatos con sepiolita. Clay Miner. 14, 295305.CrossRefGoogle Scholar
Forteza, M., Cornejo, J. & Galan, E. (1988) Effects of fibrous clay minerals on dexamethasone stability. Proc. 10th Conf. Clay Mineralogy Petrology, 281-286.Google Scholar
Foster, M.D. (1960) Interpretation of the composition of trioctahedral micas. Prof. Pap. U.S. Geol. Survey 354-B, 11-49.CrossRefGoogle Scholar
Galan, E. (1987) Industrial applications of sepiolite from Vallecas-Vicalvaro, Spain: A review. Proc. Int. Clay Conf., Denver, 400-404.Google Scholar
Galan, E., Brel, J.M., La Iglesia, A. & Robertson, R.H.S. (1975) The Caceres paiygorskite deposit, Spain. Proc. Int. Clay Conf. Mexico, 91-94.Google Scholar
Galan, E. & Castillo, A. (1984) Sepiolite-palygorskite in Spanish Tertiary basins: Genetical patterns in continental environments. Pp. 87 – 124 in: Palygorskite and Sepiolite. Occurrences, Genesis and Uses. (Singer, A. & Gahin, E., editors) Developments in Sedimentology 37, Elsevier, Amsterdam.Google Scholar
Galan, E., Mesa, J.M. & Sanchez, C. (1994) Properties and applications of palygorskite clays from Ciudad Real, Central Spain. Appl. Clay Sci. 9, 293302.Google Scholar
Gonzalez Hernandez, L., Ibarra Rueda, L. & Royo Martinez, J. (1978) Sepiolita: nueva carga inorgánica de procedencia nacional para mezclas de caucho. I Congreso de Química del Automovil, Barcelona, 46-58.Google Scholar
Gonzalez Hernandez, L., Ibarra Rueda, L., Chamorro Anton, C. & Rodriguez Diaz, A. (1981) New silica filler for rubber compounds. RUBBERCON'81, Harrogate, England, G3.1-G3,12.Google Scholar
Gonzalez Hernandez, L., Ibarra Rueda, L., Rodriguez Diaz, A. & Chamorro Anton, C. (1982) Preparation of silica by acid dissolution of sepiolite and study of its reinforcing effect in elastomers. Angew. Makromol. Chem. 103, 5160.CrossRefGoogle Scholar
Gonzalez Hernandez, L., Ibarra, L.M., Rodriguez, A., Moya, J.J. & Valle, F.J. (1984) Fibrous silica gel obtained from sepiolite by HCl attack. Clay Miner. 19, 9398.Google Scholar
Gutierrez, E., Cheeseman, Ch. & Alvarez, A. (1995) Sepiolite in the solidification/stabilization of sludges containing organic compounds. EUROCLAY'95, Leuven, 297-298.Google Scholar
Haden, W.L. & Schwint, I.A. (1967) Attapulgite: its properties and applications. Ind. Engin. Chem. 59, 5869.CrossRefGoogle Scholar
Helxos-Rybicka, E. (1985) Sorption of Ni, Zn and Cd on sepiolite. Clay Miner. 20, 525527.Google Scholar
Hermosin, M.C. & Cornejo, J. (1986) Methylation of sepiolite and palygorskite with diazomethane. Clays Clay Miner. 34, 591596.Google Scholar
Hermosin, M.C., Cornejo, J., White, J.L. & Hem, S.L. (1981) Sepiolite. A potential excipient for drugs subject to oxidative degradation. J. Pharm. Sci. 70, 189192.CrossRefGoogle ScholarPubMed
Jimenez Lopez, A., Lopez Gonzalez, J.D., Ramirez Saenz, A., Rodriguez Reinoso, F., Valenzuela Calahorro, C. & ZURITA HERRERO. L. (1978) Evolution of surface area in a sepiolite as a function of acid and heat treatments. Clay Miner. 13, 375386.Google Scholar
Jones, B.F. & Galan, E. (1988) Sepiolite and palygorskite. Pp. 631-674 in: Hydrous Phyllosilicates. (Bailey, S.W., editor) Reviews in Mineralogy, Vol. 19, Mineralogical Society of America, Washington, D.C.Google Scholar
Lopez Gonzalez, J.D., Ramirez, A., Rodriguez, F., Valenzuela, C. & Zurita, L. (1981) Activación de una sepiolita con disoluciones diluidas de HNO3 y posteriores tratamientos térmicos. I. Estudio de la superficie especffica. Clay Miner. 16, 103–113.CrossRefGoogle Scholar
Martindale, W. (1982) The Extra Pharmacopoeia: 28th ed., Pharm. Soc. Great Britain, Pharmaceutical Press, London, 2025 pp.Google Scholar
Mora, M.A., Sanchez, C. & Acosta, A. (1995) Adsorption of phenol on palygorskite. EUROCLAY'95, Leuven, 140-141.Google Scholar
O'Driscoll, M. (1992) European cat litter. Absorbing market growth. Industrial Minerals, 299, 46–65.Google Scholar
Oscarson, D.W., Van Scoyoc, G.E., & Ai-Ilrichs, J.L. (1986) Lysis of erythrocytes by silicate minerals. Clays Clay Miner., 34, 7486.CrossRefGoogle Scholar
Paquet, H., Duplay, J., Valleron-Blanc, M.M. & Millot, G. (1987) Octahedral composition of individual particles in smectite-palygorskite and smectite-sepiolite assemblages. Proc. Int. Clay Conf. Denver, 73-77.Google Scholar
Perez Rodriguez, J.L., Carretero, M.I. & Maqueda, C. (1989) Behaviour of sepiolite, vermiculite and montmorillonite as supports in anaerobic digesters. Appl. Clay Sci. 4, 6982.Google Scholar
Pott, F., Bellmann, B., Mühle, H., Rodelsperger, K., Rippe, R.M., Roller, M. & Rosenbruch, M. (1990) Intraperitoneal injection studies for the evaluation of the carcinogenicity of fibrous phyllosilicates. Pp. 319-331 in: Health Related Effects of Phyllosilicates. (Bignon, J., editor) NATO ASI Series, G. Ecological Sci. Vol. G21, Springer-Verlag, Heidelberg.Google Scholar
Ruiz-Hitzky, E. (1974) Contribution à l’étude des réactions de greffage de groupements organiques sur les surfaces minérales. Greffage de la sépiolite. PhD thesis, Univ. Louvain, Belgium.Google Scholar
Ruiz-Hitzky, E. & Fripiat, J.J. (1976) Organomineral derivatives obtained by reacting organochlorosilanes with the surface of silicates in organic solvents. Clays Clay Miner. 25, 2530.Google Scholar
Santaren, J. (1993) European market developments for absorbent clays. Ind. Miner. 304, 35–47.Google Scholar
Santaren, J. & Alvarez, A. (1994) Assessment of the health effects of mineral dusts. The sepiolite case. Ind. Miner. 319, 101114.Google Scholar
Serna, C. & Van Socyoc, G.E. (1979) Infrared study of sepiolite and palygorskite surfaces. Proc. Int. Clay Conf. Oxford, 197-206.Google Scholar
Serratosa, J.M. (1979) Surface properties of fibrous clay minerals (palygorskite and sepiolite). Proc. Int. Clay Conf. Oxford, 99-109.CrossRefGoogle Scholar
Suarez, M. (1992) El yacimiento de palygorskita de Bercimuel (Segovia): L Mineralogía y Génesis. II. Características físico-mecánicas del mineral y activación ácida. PaD thesis, Univ. Salamanca, Spain.Google Scholar
Sugiura, M. (1993) Removal of methanethiol by sepiolite and various sepiolite-methal compound complexes in ambient air. Clay Sci. 9, 33–41.Google Scholar
Sugiura, M., Fukumoto, K. & Inagaki, S. (1991a) Adsorption of odorous vapors by sepiolite in ambient air. Clay Sci. 8, 129145.Google Scholar
Sugiura, M., Hayashi, H. & Suzuki, T. (1991b) Adsorption of ammonia by sepiolite in ambient air. Clay Sci. 8, 87100.Google Scholar
Sugiura, M., Horii, M., Hayashi, H., Suzuki, T., Kamigaito, O., Nogawa, S. & Oishi, S. (1990) Deodorizing paper using β-sepiolite. Proc. 9th Int. Clay Cone Strasbourg, 91-100.Google Scholar
Van Olphen, E. & Fripiat, J. (1979) Data Handbook for Clay Materials and Other Non-metallic Minerals. Pergamon, Oxford, 346 pp.Google Scholar
Vicente Rodriguez, M.A., Lopez Gonzalez, J.D. & Bar'ARES MUOZ, M.A. (1994) Acid activation of a Spanish sepiolite: physicochemical characterization, free silica content and surface area of products obtained. Clay Miner. 29, 361367.CrossRefGoogle Scholar
Wagner, J.C., Griffiths, D.M. & Munday, D.E. (1987) Experimental studies with palygorskite dust. Brit. J. Indus. Med. 44, 749763.Google Scholar
Weaver, C.E. & Pollard, L. (1973) The Chemistry of Clay Minerals. Elsevier, Amsterdam, 213 pp.Google Scholar
Xianzhen, Y. & Chou, Z. (1990) Purification of sepiolite and preparation of silica. Proc. 9th Int. Clay Conf. Strasbourg, 25-32.Google Scholar