Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-18T18:00:00.867Z Has data issue: false hasContentIssue false

Production of lightweight expanded aggregates from smectite clay, palygorskite-rich sediment and phosphate sludge

Published online by Cambridge University Press:  11 April 2024

Sameh Jaha*
Affiliation:
Research Laboratory of Geo-systems, Geo-resources and Geo-environments (LR3G), Department of Earth Sciences, Faculty of Sciences of Gabes (FSG), University of Gabes, Zrig, Gabes, Tunisia
João Carvalheiras
Affiliation:
Department of Materials and Ceramic Engineering/CICECO – Aveiro Institute of Materials, University of Aveiro, Campus of Santiago, Aveiro, Portugal
Salah Mahmoudi
Affiliation:
Research Laboratory of Geo-systems, Geo-resources and Geo-environments (LR3G), Department of Earth Sciences, Faculty of Sciences of Gabes (FSG), University of Gabes, Zrig, Gabes, Tunisia
João Labrincha
Affiliation:
Department of Materials and Ceramic Engineering/CICECO – Aveiro Institute of Materials, University of Aveiro, Campus of Santiago, Aveiro, Portugal
*
Corresponding author: Sameh Jaha; Email: samah.jahha@yahoo.com

Abstract

Lightweight expanded clay aggregates (LWAs) are porous materials with low density and high strength (EN-13055-1), and they are important in sustainable construction through their lightweight nature and ability to provide thermal or acoustic insulation. The objective of this work was therefore to evaluate the preparation of LWAs using a smectite clay (M1 formulation), whose application in common ceramic production is difficult. An alternative approach was proposed for the valorization of phosphate sludge and a palygorskite-rich sediment by mixing them with expanded clay (M2 formulation) for LWA production. This could result in economically cost-effective products with significant environmental benefits. Pellets were prepared and fired at various temperatures (1100°C, 1125°C and 1150°C), and relevant properties such as bloating index, density, water absorption and compressive strength were determined. Additionally, the microstructure, mineralogical transformations and phase compositions under various sintering temperatures were investigated. Increasing the temperature from 1000°C to 1150°C significantly improved the expansion properties of LWAs, and 1150°C seemed to be the optimal firing temperature at which the best expansion properties were achieved. In addition, the incorporation of the selected waste improved the properties of the final products, leading to lower density, greater strength and greater bloating with the development of the internal pore structure as compared to the LWAs without this addition. Because of their low density (0.6 g cm–3) and sufficient compressive strength (0.86 MPa), the manufactured LWAs can be used in construction (as insulating panels or in lightweight concrete) and in green roofs.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: M. Dondi

References

Abbaslou, H., Ghanizadeh, A.R. & Amlashi, A.T. (2016) The compatibility of bentonite/sepiolite plastic concrete cut-off wall material. Construction and Building Materials, 124, 11651173.CrossRefGoogle Scholar
Abdelfattah, M.M., Géber, R., Abdel-Kader, N.A. & Kocserha, I. (2022) Assessment of the mineral phase and properties of clay–Ca bentonite lightweight aggregates. Arabian Journal of Geosciences, 15, 114.CrossRefGoogle Scholar
Abdelmalek, B., Rekia, B., Youcef, B., Lakhdar, B. & Nathalie, F. (2017) Mineralogical characterization of Neogene clay areas from the Jijel basin for ceramic purposes (NE Algeria – Africa). Applied Clay Science, 136, 176183.CrossRefGoogle Scholar
Alabarse, F.G., Conceição, R.V., Balzaretti, N.M., Schenato, F. & Xavier, A.M. (2011) In-situ FTIR analyses of bentonite under high-pressure. Applied Clay Science, 51, 202208.CrossRefGoogle Scholar
Allouche, F., Eloussaief, M., Ghrab, S. & Kallel, N. (2020) Clay material of an Eocene deposit (Khanguet Rheouis, Tunisia): identification using geochemical and mineralogical characterization. Clays and Clay Minerals, 68, 262272.CrossRefGoogle Scholar
Alvarez, A., Santaren, J., Esteban-Cubillo, A. & Aparicio, P. (2011) Current industrial applications of palygorskite and sepiolite. Developments in Clay Science, 3, 281298.CrossRefGoogle Scholar
Anan, T.I. & Abd El-Wahed, A.G. (2017) The Maastrichtian–Danian Dakhla Formation, Eastern Desert, Egypt: utilization in manufacturing lightweight aggregates. Applied Clay Science, 150, 1015.CrossRefGoogle Scholar
Arab, P.B., Araújo, T.P. & Pejon, O.J. (2015) Identification of clay minerals in mixtures subjected to differential thermal and thermogravimetry analyses and methylene blue adsorption tests. Applied Clay Science, 114, 133140.CrossRefGoogle Scholar
Aras, A. & Kristaly, F. (2019) α-Cristobalite formation in ceramic tile and sewage pipe bodies derived from Westerwald ball clay and its effect on elastic-properties. Applied Clay Science, 178, 105126.CrossRefGoogle Scholar
Ayati, B., Ferrándiz-Mas, V., Newport, D. & Cheeseman, C. (2018) Use of clay in the manufacture of lightweight aggregate. Construction and Building Materials, 162, 124131.CrossRefGoogle Scholar
Bayoussef, A., Loutou, M., Taha, Y., Mansori, M., Benzaazoua, M., Manoun, B., & Hakkou, R. (2021a) Use of clays by-products from phosphate mines for the manufacture of sustainable lightweight aggregates. Journal of Cleaner Production, 280, 124361.CrossRefGoogle Scholar
Bayoussef, A., Oubani, M., Loutou, M., Taha, Y., Benzaazoua, M., Manoun, B. & Hakkou, R. (2021b) Manufacturing of high-performance ceramics using clays by-product from phosphate mines. Materials Today: Proceedings, 37, 39944000.Google Scholar
Boussen, S., Sghaier, D., Chaabani, F., Jamoussi, B., Ben Messaoud, S. & Bennour, A. (2015) The rheological, mineralogical and chemical characteristic of the original and the Na2CO3-activated Tunisian swelling clay (Aleg Formation) and their utilization as drilling mud. Applied Clay Science, 118, 344353.CrossRefGoogle Scholar
Cao, Y., Liu, R., Xu, Y., Ye, F., Xu, R. & Han, Y. (2019) Effect of SiO2, Al2O3 and CaO on characteristics of lightweight aggregates produced from MSWI bottom ash sludge (MSWI-BAS). Construction and Building Materials, 205, 368376.CrossRefGoogle Scholar
Chalouati, Y., Bennour, A., Mannai, F. & Srasra, E. (2020) Characterization, thermal behaviour and firing properties of clay materials from Cap Bon Basin, north-east Tunisia, for ceramic applications. Clay Minerals, 55, 351365.CrossRefGoogle Scholar
Chen, P., Zhong, H., Li, X., Li, M. & Zhou, S. (2021) Palygorskite@Co3O4 nanocomposites as efficient peroxidase mimics for colorimetric detection of H2O2 and ascorbic acid. Applied Clay Science, 209, 106109.CrossRefGoogle Scholar
Da Silva, M.L., Batezelli, A. & Ladeira, F.S.B. (2018). Genesis and paleoclimatic significance of palygorskite in the cretaceous Paleosols of the Bauru Basin, Brazil. Catena, 168, 110128.CrossRefGoogle Scholar
Dabbebi, R., Barroso de Aguiar, J.L., Camões, A., Samet, B. & Baklouti, S. (2018) Effect of the calcinations temperatures of phosphate washing waste on the structural and mechanical properties of geopolymeric mortar. Construction and Building Materials, 185, 489498.CrossRefGoogle Scholar
Daoudi, L., Knidiri, A., El Boudour El Idrissi, H., Rhouta, B. & Fagel, N. (2015) Role of the texture of fibrous clay minerals in the plasticity behavior of host materials (Plateau du Kik, Western High Atlas, Morocco). Applied Clay Science, 118, 283289.CrossRefGoogle Scholar
De Jesus Fernandes Pinto, S. (2005) Valorização de resíduos da indústria da celulose na produção de agregados leves. PhD thesis. University of Aveiro, Aveiro, Portugal, 118 pp.Google Scholar
De Souza, C., De Jesus, T., Dos Santos, R., Bomfim, L., Bertolino, L., Andrade, D. F. & Spinelli, L. S. (2021) Characterization of Brazilian palygorskite (Guadalupe region) and adsorptive behaviour for solvatochromic dyes. Clay Minerals, 56, 5564.CrossRefGoogle Scholar
Ding, C., Sun, T., Shui, Z., Xie, Y. & Ye, Z. (2022) Physical properties, strength, and impurities stability of phosphogypsum-based cold-bonded aggregates. Construction and Building Materials, 331, 127307.CrossRefGoogle Scholar
Dondi, M., Cappelletti, P., D'Amore, M., de Gennaro, R., Graziano, S.F., Langella, A. & Zanelli, C. (2016) Lightweight aggregates from waste materials: reappraisal of expansion behavior and prediction schemes for bloating. Construction and Building Materials, 127, 394409.CrossRefGoogle Scholar
EN-1097-6 (2013) Tests for mechanical and physical properties of aggregates. Part 6: Determination of particle density and water absorption. European Committee for Standardization, 61 pp.Google Scholar
Ettoumi, M., Jouini, M., Neculita, C.M., Bouhlel, S., Coudert, L., Haouech, I. & Benzaazoua, M. (2020) Characterization of Kef Shfeir phosphate sludge (Gafsa, Tunisia) and optimization of its dewatering. Journal of Environmental Management, 254, 109801.CrossRefGoogle ScholarPubMed
Ettoumi, M., Jouini, M., Neculita, C.M., Bouhlel, S., Coudert, L., Haouech, I. et al. (2021) Characterization of phosphate processing sludge from Tunisian mining basin and its potential valorization in fired bricks making. Journal of Cleaner Production, 284, 124750.CrossRefGoogle Scholar
Ezzatahmadi, N., Millar, G. J., Ayoko, G.A., Zhu, J., Zhu, R., Liang, X. & Xi, Y. (2019) Degradation of 2,4-dichlorophenol using palygorskite-supported bimetallic Fe/Ni nanocomposite as a heterogeneous catalyst. Applied Clay Science, 168, 276286.CrossRefGoogle Scholar
Fakhfakh, E., Hajjaji, W., Medhioub, M., Rocha, F., Galindo, A.L., Setti, M. & Jamoussi, F. (2007) Effect of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks. Applied Clay Science, 35, 228237.CrossRefGoogle Scholar
Fan, Z., Zhou, S., Xue, A., Li, M., Zhang, Y., Zhao, Y. & Xing, W. (2021) Preparation and properties of a low-cost porous ceramic support from low-grade palygorskite clay and silicon-carbide with vanadium pentoxide additives. Chinese Journal of Chemical Engineering, 29, 417425.CrossRefGoogle Scholar
Fontaine, F., Christidis, G.E., Yans, J., Hollanders, S., Hoffman, A. & Fagel, N. (2020) Characterization and origin of two Fe-rich bentonites from Westerwald (Germany). Applied Clay Science, 187, 105444.CrossRefGoogle Scholar
Franus, M., Barnat-Hunek, D. & Wdowin, M. (2016) Utilization of sewage sludge in the manufacture of lightweight aggregate. Environmental Monitoring and Assessment, 188, 113.CrossRefGoogle ScholarPubMed
Franus, M., Panek, R., Madej, J. & Franus, W. (2019) The properties of fly ash derived lightweight aggregates obtained using microwave radiation. Construction and Building Materials, 227, 116677.CrossRefGoogle Scholar
Frayyeh, Q.J., Abbas, W.A. & Hussein, M.J. (2014) Producing lightweight concrete aggregate from Iraqi attapulgite. Presented at: Sustainable Solutions in Structural Engineering and Construction, 2nd Australasia and South East Asia Conference. Bangkok, Thailand, 37 November.Google Scholar
Frost, R.L. & Ding, Z. (2003) Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochimica Acta, 397, 119128.CrossRefGoogle Scholar
González-Corrochano, B., Alonso-Azcárate, J., Rodas, F.J., Luque, M. & Barrenechea, J.F. (2010) Microstructure and mineralogy of lightweight aggregates produced from washing aggregate sludge, fly ash and used motor oil. Cement and Concrete Composites, 32, 694707.CrossRefGoogle Scholar
González-Corrochano, B., Alonso-Azcárate, J., Rodas, F.J., Barrenechea, J.F. & Luque, M. (2011) Microstructure and mineralogy of lightweight aggregates manufactured from mining and industrial wastes. Construction and Building Materials, 25, 35913602.CrossRefGoogle Scholar
Graziano, S.F., Zanelli, C., Molinari, C., de Gennaro, B., Giovinco, G., Correggia, C. & Dondi, M. (2022) Use of screen glass and polishing sludge in waste-based expanded aggregates for resource-saving lightweight concrete. Journal of Cleaner Production, 332, 130089.CrossRefGoogle Scholar
Harech, M.A., Mesnaoui, M., Abouliatim, Y., Elhafiane, Y., Benhammou, A., Abourriche, A. & Nibou, L. (2021) Effect of temperature and clay addition on the thermal behavior of phosphate sludge. Boletín de la Sociedad Española Cerámica y Vidrio, 60, 194204.CrossRefGoogle Scholar
Harech, M. A., Dabbebi, R., Abouliatim, Y., Elhafiane, Y., Smith, A., Mesnaoui, M. & Baklouti, S. (2022) A comparative study of the thermal behaviour of phosphate washing sludge from Tunisia and Morocco. Journal of Thermal Analysis and Calorimetry, ), pp. 110.Google Scholar
Karunadasa, K.S.P., Manoratne, C.H., Pitawala, H.M.T.G.A. & Rajapakse, R.M.G. (2019) Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. Journal of Physics and Chemistry of Solids, 134, 2128.CrossRefGoogle Scholar
Lakbita, O., Rhouta, B., Maury, F., Senocq, F., Amjoud, M. & Daoudi, L. (2019) On the key role of the surface of palygorskite nanofibers in the stabilization of hexagonal metastable β-Ag2CO3 phase in palygorskite-based nanocomposites. Applied Clay Science, 172, 123134.CrossRefGoogle Scholar
Li, X., He, C., Lv, Y., Jian, S., Jiang, W., Jiang, D. & Dan, J. (2021) Effect of sintering temperature and dwelling time on the characteristics of lightweight aggregate produced from sewage sludge and waste glass powder. Ceramics International, 47, 3343533443.CrossRefGoogle Scholar
Liao, Y. & Huang, C. (2011) Effects of heat treatment on the physical properties of lightweight aggregate from water reservoir sediment. Ceramics International, 37, 37233730.CrossRefGoogle Scholar
Liu, M., Wang, C., Bai, Y. & Xu, G. (2018) Effects of sintering temperature on the characteristics of lightweight aggregate made from sewage sludge and river sediment. Journal of Alloys and Compounds, 748, 522527.CrossRefGoogle Scholar
Liu, P., Farzana, R., Rajaro, R. & Sahajwalla, V. (2017) Lightweight expanded aggregates from the mixture of waste automotive plastics and clay. Construction and Building Materials, 145, 283291.CrossRefGoogle Scholar
Liu, Y., Wan, W., Yang, F., Hu, C., Liu, Z. & Wang, F. (2022) Performance of glass-ceramic-based lightweight aggregates manufactured from waste glass and muck. Ceramics International, 48, 2346823480.CrossRefGoogle Scholar
Loutou, M., Hajjaji, M., Mansori, M., Favotto, C. & Hakkou, R. (2013) Phosphate sludge: thermal transformation and use as lightweight aggregate material. Journal of Environmental Management, 130, 354360.CrossRefGoogle ScholarPubMed
Loutou, M., Taha, Y., Benzaazoua, M., Daafi, Y. & Hakkou, R. (2019) Valorization of clay by-product from Moroccan phosphate mines for the production of fired bricks. Journal of Cleaner Production, 229, 169179.CrossRefGoogle Scholar
Mabroum, S., Aboulayt, A., Taha, Y., Benzaazoua, M., Semlal, N. & Hakkou, R. (2020) Elaboration of geopolymers based on clays by-products from phosphate mines for construction applications. Journal of Cleaner Production, 261, 121317.CrossRefGoogle Scholar
Mahmoudi, S., Bennour, A., Srasra, E. & Zargouni, F. (2017) Characterization, firing behavior and ceramic application of clays from the Gabes region in south Tunisia. Applied Clay Science, 135, 215225.CrossRefGoogle Scholar
Mañosa, J., Formosa, J., Giro-Paloma, J., Maldonado-Alameda, A., Quina, M.J. & Chimenos, J.M. (2021) Valorisation of water treatment sludge for lightweight aggregate production. Construction and Building Materials, 269, 121335.CrossRefGoogle Scholar
Martínez, J.D., Betancourt-Parra, S., Carvajal-Marín, I. & Betancur-Vélez, M. (2018) Ceramic lightweight aggregates production from petrochemical waste and carbonates (NaHCO3 and CaCO3) as expansion agents. Construction and Building Materials, 180, 124133.CrossRefGoogle Scholar
Molinari, C., Zanelli, C., Guarini, G. & Dondi, M. (2020) Bloating mechanism in lightweight aggregates: effect of processing variables and properties of the vitreous phase. Construction and Building Materials, 261, 119980.CrossRefGoogle Scholar
Moreno-Maroto, J.M., González-Corrochano, B., Alonso-Azcárate, J., Rodríguez, L. & Acosta, A. (2017) Manufacturing of lightweight aggregates with carbon fiber and mineral wastes. Cement and Concrete Composites, 83, 335348.CrossRefGoogle Scholar
Moreno-Maroto, J.M., Uceda-Rodríguez, M., Cobo-Ceacero, C.J., Cotes-Palomino, T., Martínez-García, C. & Alonso-Azcárate, J. (2020) Studying the feasibility of a selection of southern European ceramic clays for the production of lightweight aggregates. Construction and Building Materials, 237, 117583.CrossRefGoogle Scholar
Moukannaa, S., Nazari, A., Bagheri, A., Loutou, M., Sanjayan, J.G. & Hakkou, R. (2019) Alkaline fused phosphate mine tailings for geopolymer mortar synthesis: thermal stability, mechanical and microstructural properties. Journal of Non-Crystalline Solids, 511, 7685.CrossRefGoogle Scholar
Murray, H.H. (2000) Traditional and new applications for kaolin smectite, and palygorskite: a general overview. Applied Clay Science, 17, 207221.CrossRefGoogle Scholar
Pei, J., Pan, X., Qi, Y. & Yu, H. (2022) Ganfeng Tu, preparation and characterization of ultra-lightweight ceramsite using non-expanded clay and waste sawdust. Construction and Building Materials, 346, 128410.CrossRefGoogle Scholar
Saadaoui, I. & Eloussaief, M. (2017) Analytical characterization of Eocene deposits for the identification of dolomitic-palygorskite in Jebel Rheouis, central Tunisia. Pp. 11651167 in: Euro-Mediterranean Conference for Environmental Integration. Springer, Cham, Switzerland.Google Scholar
Soltan, A.M.M., Kahl, W.A., Abd EL-Raoof, F., El-Kaliouby, B.A.H., Serry, N.A. & Abdel-Kader, M.A.K. (2016) Lightweight aggregates from mixtures of granite wastes with clay. Journal of Cleaner Production, 117, 139149.CrossRefGoogle Scholar
Suárez, M. & García-Romero, E. (2011). Advances in the crystal chemistry of sepiolite and palygorskite. Developments in Clay Science, 3, 3365.CrossRefGoogle Scholar
Sun, Y., Li, J., Chen, Z., Xue, Q., Sun, Q., Zhou, Y. & Poon, C. S. (2021) Production of lightweight aggregate ceramsite from red mud and municipal solid waste incineration bottom ash: mechanism and optimization. Construction and Building Materials, 287, 122993.CrossRefGoogle Scholar
Tlili, A., Felhi, M. & Montacer, M. (2010) Origin and depositional environment of palygorskite and sepiolite from the Ypresian phosphatic series, southwestern Tunisia. Clays and Clay Minerals, 58, 573584.CrossRefGoogle Scholar
Trabelsi, W. & Tlili, A. (2017) Phosphoric acid purification through different raw and activated clay materials (southern Tunisia), Journal of African Earth Sciences, 129, 647658.CrossRefGoogle Scholar
Volland, S. & Brötz, J. (2015) Lightweight aggregates produced from sand sludge and zeolitic rocks. Construction and Building Materials, 85, 2229.CrossRefGoogle Scholar
Wang, S., Gainey, L., Baxter, D., Wang, X., Mackinnon, I.D.R. & Xi, Y. (2021) Thermal behaviours of clay mixtures during brick firing: a combined study of in-situ XRD, TGA and thermal dilatometry. Construction and Building Materials, 299, 124319.CrossRefGoogle Scholar
Wang, S., Gainey, L., Wang, X., Mackinnon, I.D.R. & Xi, Y. (2022) Influence of palygorskite on in-situ thermal behaviours of clay mixtures and properties of fired bricks. Applied Clay Science, 216, 106384.CrossRefGoogle Scholar
Wang, W. & Wang, A. (2016) Recent progress in dispersion of palygorskite crystal bundles for nanocomposites. Applied Clay Science, 119, 1830.CrossRefGoogle Scholar
Wei, D., Zhou, S., Li, M., Xue, A., Zhang, Y., Zhao, Y. & Yang, D. (2019) PVDF/palygorskite composite ultrafiltration membranes: effects of nano-clay particles on membrane structure and properties. Applied Clay Science, 181, 105171.CrossRefGoogle Scholar
Wei, N. (2015) Leachability of heavy metals from lightweight aggregates made with sewage sludge and municipal solid waste incineration fly ash. International Journal of Environmental Research and Public Health, 12, 49925005.CrossRefGoogle ScholarPubMed
Yang, L., Ma, X., Hu, X., Liu, J., Wu, Z. & Shi, C. (2022) Production of lightweight aggregates from bauxite tailings for the internal curing of high-strength mortars. Construction and Building Materials, 341, 127800.CrossRefGoogle Scholar
Zhang, Y., Yu, C., Hu, P., Tong, W., Lv, F., Chu, P.K. & Wang, H. (2016) Mechanical and thermal properties of palygorskite poly(butylene succinate) nanocomposite. Applied Clay Science, 119, 96102.CrossRefGoogle Scholar
Zhang, Y., Wang, L., Wang, F., Sun, J., Tang, Q. & Liang, J. (2019) Effects of palygorskite on physical properties and mechanical performances of bone china. Applied Clay Science, 168, 287294.CrossRefGoogle Scholar
Zhao, D., Zhou, J. & Liu, N. (2006) Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Applied Clay Science, 33, 161170.CrossRefGoogle Scholar