Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-10T13:53:06.900Z Has data issue: false hasContentIssue false

Existence and Asymptotic Behavior for a Strongly Damped Nonlinear Wave Equation

Published online by Cambridge University Press:  20 November 2018

G. F. Webb*
Affiliation:
Vanderbilt University, Nashville, Tennessee
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study the nonlinear initial boundary value problem

(1.1) ωttαΔ ωtΔω= f(ω), t> 0

ω(x, 0) = ϕ(x), x∈ Ω

ωt(x, 0) = ψ (x), x∈ Ω

ω(x, t ) = 0, x ∈ ∂Ω, t ≥ 0.

In (1.1) Ω is a smooth bounded domain in Rn, n = 1, 2, 3, α > 0, and fC1(R;R) with f‘(x) ≦ co for all xR (where c0 is a nonnegative constant), lim sup|x|→+∞f(x)/x0, and f(0) = 0. Our objective will be to establish the existence of unique strong global solutions to (1.1) and investigate their behavior as t→ +∞.

Our approach takes advantage of the semilinear character of (1.1) and reformulates the problem as an abstract ordinary differential equation in a Banach space.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1980

References

1. Ball, J., On the asymptotic behavior of generalized processes with applications to nonlinear evolution equations, J. Math. Anal. Appl. 27 (1978), 224265.Google Scholar
2. Barbu, V., Nonlinear semigroups and differential equations in Banach spaces (Noordhoff, Leyden, 1976).Google Scholar
3. Biroli, M., Sur Vinéquation des ondes non linéaire dans la fonction inconnue et avec un convexe dépendant du temps II, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8. 55 (1973), 178186.Google Scholar
4. Caughey, T. and Ellison, J., Existence, uniqueness and stability of solutions of a class of nonlinear partial differential equations, J. Math. Anal. Appl. 51 (1975), 132.Google Scholar
5. Chafee, N. and Infante, E., A bifurcation problem for a nonlinear parabolic equation, Applicable Analysi. 4 (1974), 1737.Google Scholar
6. Clements, J., On the existence and uniqueness of solutions of the equation utt - d/dxiai(ux.) - ANut =f, Can. Math. Bull. 2 (1975), 181187.Google Scholar
7. Clements, J., Existence theorems for a quasilinear evolution equation, SIAM J. Appl. Math. 26 (1974), 745752.Google Scholar
8. Dafermos, C. and DiPerna, R., The Riemann problem for certain classes of hyperbolic systems of conservation laws, J. Differential Equation. 20 (1976), 90114.Google Scholar
9. Davis, P., A quasilinear hyperbolic and related third-order equations, J. Math. Anal. Appl. 51 (1975), 596606.Google Scholar
10. Dunford, N. and Schwartz, J., Linear operators, Part II (Interscience, New York, 1963).Google Scholar
11. Ebihara, Y., On the global classical solutions of nonlinear wave equations, Funkcial. Ekvac. 18 (1975), 227244.Google Scholar
12. Ficken, F. and Fleishman, B., Initial value problems and time periodic solutions for a nonlinear wave equation, Comm. Pure Appl. Math. 10 (1957), 331356.Google Scholar
13. Friedman, A., Partial differential equations (Holt, Rinehart, and Winston, New York, 1969).Google Scholar
14. Greenberg, J., Smooth and time-periodic solutions to the quasilinear wave equation, Arch. Rational Mech. Anal. 60 (1975/76), 2950.Google Scholar
15. Greenberg, J., MacCamy, R. and Mizel, V., On the existence, uniqueness, and stability of solutions of the equation <r‘(ux)uxx + Xuxtx = poUtt, J. Math. Mech. 17 (1968), 707728.Google Scholar
16. Henry, D., Geometric theory of semilinear parabolic equations, to appear.Google Scholar
17. Kato, T., Perturbation theory for linear operators (Springer-Verlag, New York, 1966).Google Scholar
18. Keller, J., On solutions of nonlinear wave equations, Comm. Pure Appl. Math. 10 (1957), 523530.Google Scholar
19. Jôrgens, K., Das Anfangwertproblem in Grossen fur eine Klasse nichtlinear Wellengleichungen, Math. Z. 77 (1961), 295308.Google Scholar
20. Lions, J. and Strauss, W., Some nonlinear evolution equations, Bull. Soc. Math. France. 93 (1965), 4396.Google Scholar
21. MacCamy, R. and Mizel, V., Existence and nonexistence in the large of solutions to quasilinear wave equations, Arch. Rational Mech. Anal. 25 (1967), 299320.Google Scholar
22. Nakao, M., Convergence of solutions of the wave equation with a nonlinear dissipative term to the steady state, Mem. Fac. Sci. Kyushu Univ. Ser.. 30 (1972), 257265.Google Scholar
23. Nakao, M., Decay of solutions of some nonlinear evolution equations, J. Math. Anal. Appl. 60 (1977), 542549.Google Scholar
24. Nakao, M. and Nanbu, T., Existence of global (bounded) solutions for some nonlinear evolution equations of second order, Math. Rep. College General Ed. Kyushu Univ. 10 (1975), 6775.Google Scholar
25. Panakov, M., A mixed problem for quasilinear equations of hyperbolic type, Azerbaïdzàn. Gos. Univ. Ucen. Zap. Ser. Fiz.—Mat. Nau. 1 (1973), 4652.Google Scholar
26. Pazy, A., On the differentiability and compactness of semigroups of linear operators, J. Math. Mech. 17 (1968), 11311141.Google Scholar
27. Pazy, A., A class of semi-linear equations of evolution, Israel J. Math. 20 (1975), 2336.Google Scholar
28. Sather, J., The initial-boundary value problem for a non-linear hyperbolic equation in relativistic quantum mechanics, J. Math. Mech. 16 (1966), 2750.Google Scholar
29. Sather, J., The existence of a global classical solution of the initial-boundary value problem for u +u3 = f, Arch. Rational Mech. Anal. 22 (1966), 292307.Google Scholar
30. Sadkowski, W., Behaviour of solutions of some non-linear hyperbolic equation, Demonstratio Math. 9 (1976), 393408.Google Scholar
31. Segal, I., Non-linear semi-groups, Ann. Math. 78 (1963), 339364.Google Scholar
32. Vogelsang, V., Uber Nichtlineare Wellengleichungen mit zeitabhdngigem Hauptteil, Math. Z. 149 (1976), 249260.Google Scholar
33. von Wahl, W., Uber nichtlinear Wellengleichungen mit zeitabhdngigem ellipteschen Hauptteil, Math. Z. 142 (1975), 105120.Google Scholar
34. von Wahl, W., Regular solutions of initial-boundary value problems for linear and nonlinear wave equations I, Manuscripta Math. 13 (1974), 187206.Google Scholar
35. Wang, C., A uniqueness theorem on the degenerate Cauchy problem, Can. Math. Bull. 18 (1975), 417421.Google Scholar
36. Webb, G., A bifurcation problem for a nonlinear hyperbolic partial differential equation, to appear in SIAM J. Math. Anal.Google Scholar
37. Webb, G., Compactness of bounded trajectories of dynamical systems and application to nonlinear equations, to appear.Google Scholar