Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-22T05:35:09.425Z Has data issue: false hasContentIssue false

GALOIS LCD CODES OVER $\boldsymbol {\mathbb {F}_q+u\mathbb {F}_q+v\mathbb {F}_q+uv\mathbb {F}_q}$

Published online by Cambridge University Press:  15 December 2022

ASTHA AGRAWAL*
Affiliation:
Department of Mathematics, Indian Institute of Technology Delhi, New Delhi 110016, India
GYANENDRA K. VERMA
Affiliation:
Department of Mathematics, Indian Institute of Technology Delhi, New Delhi 110016, India e-mail: gkvermaiitdmaths@gmail.com
R. K. SHARMA
Affiliation:
Department of Mathematics, Indian Institute of Technology Delhi, New Delhi 110016, India e-mail: rksharmaiitd@gmail.com

Abstract

Wu and Shi [‘A note on k-Galois LCD codes over the ring $\mathbb {F}_q + u\mathbb {F}_q$ ’, Bull. Aust. Math. Soc. 104(1) (2021), 154–161] studied $ k $ -Galois LCD codes over the finite chain ring $\mathcal {R}=\mathbb {F}_q+u\mathbb {F}_q$ , where $u^2=0$ and $ q=p^e$ for some prime p and positive integer e. We extend the results to the finite nonchain ring $ \mathcal {R} =\mathbb {F}_q+u\mathbb {F}_q+v\mathbb {F}_q+uv\mathbb {F}_q$ , where $u^2=u,v^2=v $ and $ uv=vu $ . We define a correspondence between the $ l $ -Galois dual of linear codes over $ \mathcal {R} $ and the $ l $ -Galois dual of their component codes over $ \mathbb {F}_q $ . Further, we construct Euclidean LCD and $ l $ -Galois LCD codes from linear codes over $ \mathcal {R} $ . We prove that any linear code over $ \mathcal {R} $ is equivalent to a Euclidean code over $\mathbb {F}_q$ with $ q>3 $ and an $ l $ -Galois LCD code over $ \mathcal {R}$ with $0<l<e$ and $p^{e-l}+1\mid p^e-1$ . Finally, we investigate MDS codes over $ \mathcal {R}$ .

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first and second authors are supported by UGC, New Delhi, Govt. of India under grant DEC18-417932 and CSIR, New Delhi, Govt. of India under F. No. 09/086(1407)/2019-EMR-I, respectively.

References

Ashraf, M. and Mohammad, G., ‘Quantum codes from cyclic codes over ${F}_q+u{F}_q+v{F}_q+\mathrm{uv}{F}_q$ ’, Quantum Inf. Process. 15(10) (2016), 40894098.CrossRefGoogle Scholar
Carlet, C. and Guilley, S., ‘Complementary dual codes for counter-measures to side-channel attacks’, Adv. Math. Commun. 10(1) (2016), 131150.10.3934/amc.2016.10.131CrossRefGoogle Scholar
Carlet, C., Mesnager, S., Tang, C. and Qi, Y., ‘Euclidean and Hermitian LCD MDS codes’, Des. Codes Cryptogr. 86(11) (2018), 26052618.10.1007/s10623-018-0463-8CrossRefGoogle Scholar
Carlet, C., Mesnager, S., Tang, C. and Qi, Y., ‘New characterization and parametrization of LCD codes’, IEEE Trans. Inform. Theory 65(1) (2019), 3949.CrossRefGoogle Scholar
Carlet, C., Mesnager, S., Tang, C., Qi, Y. and Pellikaan, R., ‘Linear codes over ${F}_q$ are equivalent to LCD codes for $q>3$ ’, IEEE Trans. Inform. Theory 64(4, part 2) (2018), 30103017.CrossRefGoogle Scholar
Chen, B. and Liu, H., ‘New constructions of MDS codes with complementary duals’, IEEE Trans. Inform. Theory 64(8) (2018), 57765782.10.1109/TIT.2017.2748955CrossRefGoogle Scholar
Fan, Y. and Zhang, L., ‘Galois self-dual constacyclic codes’, Des. Codes Cryptogr. 84(3) (2017), 473492.CrossRefGoogle Scholar
Jin, L., ‘Construction of MDS codes with complementary duals’, IEEE Trans. Inform. Theory 63(5) (2017), 28432847.Google Scholar
Kaboré, J. and Charkani, M. E., ‘Constacyclic codes over ${F}_q+u{F}_q+v{F}_q+\mathrm{uv}{F}_q$ ’, Preprint, 2016, arXiv:1507.03084 [cs.IT].Google Scholar
Li, P., Guo, X., Zhu, S. and Kai, X., ‘Some results on linear codes over the ring ${\mathbb{Z}}_4+u{\mathbb{Z}}_4+v{\mathbb{Z}}_4+ uv{\mathbb{Z}}_4$ ’, J. Appl. Math. Comput. 54(1–2) (2017), 307324.10.1007/s12190-016-1011-1CrossRefGoogle Scholar
Liu, X., Fan, Y. and Liu, H., ‘Galois LCD codes over finite fields’, Finite Fields Appl. 49 (2018), 227242.10.1016/j.ffa.2017.10.001CrossRefGoogle Scholar
Liu, Z. and Wang, J., ‘Linear complementary dual codes over rings’, Des. Codes Cryptogr. 87(12) (2019), 30773086.CrossRefGoogle Scholar
Massey, J. L., ‘Linear codes with complementary duals’, Discrete Math. 106/107 (1992), 337342. 1992.10.1016/0012-365X(92)90563-UCrossRefGoogle Scholar
Prakash, O., Yadav, S., Islam, H. and Solé, P., ‘Self-dual and LCD double circulant codes over a class of non-local rings’, Comput. Appl. Math. 41(6) (2022), 116.CrossRefGoogle Scholar
Wu, R. and Shi, M., ‘A note on k-Galois LCD codes over the ring ${F}_q+u{F}_q$ ’, Bull. Aust. Math. Soc. 104(1) (2021), 154161.10.1017/S0004972720001331CrossRefGoogle Scholar
Yang, X. and Massey, J. L., ‘The condition for a cyclic code to have a complementary dual’, Discrete Math. 126(1–3) (1994), 391393.10.1016/0012-365X(94)90283-6CrossRefGoogle Scholar
Yao, T., Shi, M. and Solé, P., ‘Skew cyclic codes over ${F}_q+u{F}_q+v{F}_q+ uv{F}_q$ ’, J. Algebra Comb. Discrete Struct. Appl. 2(3) (2015), 163168.Google Scholar